$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Detectability of Delamination in Concrete Structure Using Active Infrared Thermography in Terms of Signal-to-Noise Ratio 원문보기

Applied sciences, v.8 no.10, 2018년, pp.1986 -   

Huh, Jungwon (Department of Civil and Environmental Engineering, Chonnam National University, Yeosu 59626, Korea) ,  Mac, Van (Department of Civil and Environmental Engineering, Chonnam National University, Yeosu 59626, Korea) ,  Tran, Quang (Department of Civil and Environmental Engineering, Chonnam National University, Yeosu 59626, Korea) ,  Lee, Ki-Yeol (Department of Civil and Landscape Architecture Engineering, Suncheon Jeil College, Suncheon 57997, Korea) ,  Lee, Jong-In (Department of Civil and Environmental Engineering, Chonnam National University, Yeosu 59626, Korea) ,  Kang, Choonghyun (Department of Civil and Environmental Engineering, Chonnam National University, Yeosu 59626, Korea)

Abstract AI-Helper 아이콘AI-Helper

Detecting subsurface delamination is a difficult and vital task to maintain the durability and serviceability of concrete structure for its whole life cycle. The aim of this work was to obtain better knowledge of the effect of depth, heating time, and rebar on the detectability capacity of delaminat...

참고문헌 (42)

  1. Yohali Segmentation of thermal images for non-destructive evaluation of bridge decks NDT E Int. 2008 10.1016/j.ndteint.2007.12.003 41 395 

  2. Detecting Defects in Reinforced Concrete using the Method of Infrared Thermography CrSNDT J. 2013 3 3 

  3. Ahlborn, T.M., and Brooks, C.N. (2015). Evaluation of Bridge Decks Using Non-Destructive Evaluation (NDE) at Near Highway Speeds for Effective Asset Management, Michigan Technological University. RC-1617. 

  4. Portland Cement Association (2002). Types and Causes of Concrete Deterioration, Portland Cement Association. 

  5. 10.1016/j.ndteint.2018.09.001 Tran, Q.H., Huh, J., Mac, V.H., Kang, C., and Han, D. (2018). Effects of rebars on the detectability of subsurface defects in concrete bridges using square pulse thermography. NDT E Int. 

  6. Vaghefi, K. (2013). Infrared Thermography Enhancements for Concrete Bridge Evaluation. [Ph.D. Thesis, Michigan Technological Univesity]. 

  7. 10.1061/9780784413616.213 Hiasa, S., Birgul, R., Watase, A., Matsumoto, M., Mitani, K., and Catbas, F.N. (2014, January 17). A Review of Field Implementation of Infrared Thermography as a Non-destructive Evaluation Technology Shuhei. Proceedings of the Sixth Annual International Conference on Computing in Civil and Building Engineering, Orlando, FL, USA. 

  8. 10.3390/jimaging2020011 Milovanović, B., and Banjad Pečur, I. (2016). Review of Active IR Thermography for Detection and Characterization of Defects in Reinforced Concrete. J. Imaging, 2. 

  9. American Association of State Highway Transportation Officials (2014). AASHTO LRFD Bridge Design Specifications, American Association of State Highway Transportation Officials. 

  10. American Concrete Institute (2014). Building Code Requirements for Structural Concrete (ACI 318M-14), American Concrete Institute. 

  11. Tran Detectability of Subsurface Defects with Different Width-to-Depth Ratios in Concrete Structures Using Pulsed Thermography J. Nondestruct. Eval. 2018 10.1007/s10921-018-0489-x 37 32 

  12. Huh Experimental Study on Detection of Deterioration in Concrete Using Infrared Thermography Technique Adv. Mater. Sci. Eng. 2016 10.1155/2016/1053856 2016 1053856 

  13. Oliferuk Reconstruction of size and depth of simulated defects in austenitic steel plate using pulsed infrared thermography Infrared Phys. Technol. 2012 10.1016/j.infrared.2012.02.004 55 363 

  14. Maierhofer Application of impulse-thermography for non-destructive assessment of concrete structures Cem. Concr. Compos. 2006 10.1016/j.cemconcomp.2006.02.011 28 393 

  15. Sharpe Theoretical and Practical Aspects of the Thermal Nondestructive Testing of Bonded Structures Research Techniques in NDT 1982 Volume 5 238 

  16. 10.1007/978-1-4471-1995-1 Maldague, X.P.V. (1993). Nondestructive Evaluation of Materials by Infrared Thermography, Springer. 

  17. Maierhofer Influence of concrete properties on the detection of voids with impulse-thermography Infrared Phys. Technol. 2007 10.1016/j.infrared.2006.06.007 49 213 

  18. Bosiljkov Determination of the applicability and limits of void and delamination detection in concrete structures using infrared thermography NDT E Int. 2015 10.1016/j.ndteint.2015.05.003 74 87 

  19. Cheng Defect detection of concrete structures using both infrared thermography and elastic waves Autom. Constr. 2008 10.1016/j.autcon.2008.05.004 18 87 

  20. Madruga Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques Opt. Photonics J. 2013 10.4236/opj.2013.34A004 3 20 

  21. Larsen, C.A. (2011). Document Flash Thermography. [Ph.D. Thesis, Utah State University]. 

  22. Svantner Quantitative evaluation of active thermography using contrast-to-noise ratio Appl. Opt. 2018 10.1364/AO.57.000D49 57 D49 

  23. Almond An analytical study of the pulsed thermography defect detection limit J. Appl. Phys. 2012 10.1063/1.4704684 111 093510 

  24. Weritz Investigation of concrete structures with pulse phase thermography Mater. Struct. 2005 38 843 

  25. Maldague Pulse phase infrared thermography J. Appl. Phys. 1996 10.1063/1.362662 79 2694 

  26. Maierhofer Transient thermography for structural investigation of concrete and composites in the near surface region Infrared Phys. Technol. 2002 10.1016/S1350-4495(02)00151-2 43 271 

  27. 10.21611/qirt.2010.079 Madruga, F.J., Albendea, P., Ibarra-Castanedo, C., and López-Higuera, J.M. (2010, January 27-30). Signal to Noise Ratio (SNR) Comparison for Lock-in Thermographic Data Processing Methods in CFRP Specimen. Proceedings of the 10th International Conference on Quantitative Infrared Thermography, Québec, QC, Canada. 

  28. Usamentiaga Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography Infrared Phys. Technol. 2012 10.1016/j.infrared.2012.08.002 55 491 

  29. Usamentiaga A quantitative comparison of stimulation and post-processing thermographic inspection methods applied to aeronautical carbon fibre reinforced polymer Quant. Infrared Thermogr. J. 2013 10.1080/17686733.2013.774623 10 55 

  30. FLIR System Inc. (2012). The Ultimate Infrared Handbook for R & D Professionals, FLIR System Inc. 

  31. Usamentiaga Infrared Thermography for Temperature Measurement and Non-Destructive Testing Sensors 2014 10.3390/s140712305 14 12305 

  32. 10.1002/9783527630868 Vollmer, M., and Möllmann, K.-P. (2010). Infrared Thermal Imaging: Fundamentals, Research and Applications, WILEY-VCH Verlag GmbH & Co. KGaA. 

  33. MICRO-EPSILON (2018). Basics of Non Contact Temperature Measurement, MICRO-EPSILON. 

  34. Nielsen-Kellerman (1999). Instruction Manual of Kestrel 3000 ™ ®, Nielsen-Kellerman. 

  35. FLIR System Inc. (2014). FLIR SC660 Catalog: Technical Data of FLIR SC660 Infrared Camera, FLIR System Inc. 

  36. 10.21611/qirt.2010.004 Albendea, P., Madruga, F.J., Cobo, A., and López-Higuera, J.M. (2010, January 27-30). Signal to Noise Ratio (SNR) Comparison for Pulsed Thermographic Data Processing Methods Applied to Welding Defect Detection. Proceedings of the 10th International Conference on Quantitative Infrared Thermography, Québec, QC, Canada. 

  37. Brown Heating Methods and Detection Limits for Infrared Thermography Inspection of Fiber-Reinforced Polymer Composites ACI Mater. J. 2007 104 481 

  38. 10.3390/s17081718 Tran, Q.H., Han, D., Kang, C., Haldar, A., and Huh, J. (2017). Effects of Ambient Temperature and Relative Humidity on Subsurface Defect Detection in Concrete Structures by Active Thermal Imaging. Sensors, 17. 

  39. Kretzmann, J.E. (2016). Evaluating the Industrial Application of Non-Destructive Inspection of Composites Using Transient Thermography. [Ph.D. Thesis, University of Stellenbosch]. 

  40. 10.1016/B978-008043020-1/50040-5 Maldague, X.P.V. (2000). Applications of Infrared Thermography in Nondestructive Evaluation, Elsevier. 

  41. Maldague, X.P. (2001). Theory and Practice of Infrared Technology for Nondestructive Testing, John Wiley & Sons, Inc. 

  42. Lewis, C.D. (1997). Demand Forecasting and Inventory Control: A Computer Aided Learning Approach, Woodhead Publishing Ltd. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로