$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA 원문보기

Polymers, v.10 no.10, 2018년, pp.1178 -   

Liu, Yanping (School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China) ,  Wei, Hanghang (ypliu@zzu.edu.cn (Y.L.)) ,  Wang, Zhen (hanghang_wei@163.com (H.W.)) ,  Li, Qian (School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China) ,  Tian, Nan (ypliu@zzu.edu.cn (Y.L.))

Abstract AI-Helper 아이콘AI-Helper

The mechanical properties of poly (lactic acid) (PLA) nanofibers with 0%, 5%, 10%, and 20% (w/w) poly (vinyl alcohol) (PVA) were investigated at the macro- and microscale. The macro-mechanical properties for the fiber membrane revealed that both the modulus and fracture strain could be improved by 1...

주제어

참고문헌 (39)

  1. 1. Temenoff J.S. Mikos A.G. Injectable biodegradable materials for orthopaedic tissue engineering Biomaterials 2000 21 2405 2412 10.1016/S0142-9612(00)00108-3 11055288 

  2. 2. Sinha Ray S. Yamada K. Okamoto M. Ueda K. Polylactide-layered silicate nanocomposite: A novel biodegradable material Nano Lett. 2002 2 1093 1096 10.1021/nl0202152 

  3. 3. Narayanan G. Vernekar V.N. Kuyinu ELand Laurencin C.T. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering Adv. Drug Deliv. Rev. 2016 107 247 276 10.1016/j.addr.2016.04.015 27125191 

  4. 4. Pan P. Zhu B. Kai W. Serizawa S. Iji M. Inoue Y. Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber J. Appl. Polym. Sci. 2007 105 1511 1520 10.1002/app.26407 

  5. 5. Awal A. Ghosh S.B. Sain M. Development and morphological characterization of wood pulp reinforced biocomposite fibers J. Mater. Sci. 2009 44 2876 2881 10.1007/s10853-009-3380-4 

  6. 6. Kim K.W. Lee B.H. Kim H.J. Sriroth K. Dorgan J.R. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites J. Therm. Anal. Calorim. 2011 108 1131 1139 10.1007/s10973-011-1350-y 

  7. 7. Ostafinska A. Fortelny I. Nevoralova M. Hodan J. Kredatusova J. Slouf M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology RSC Adv. 2015 5 98971 98982 10.1039/C5RA21178F 

  8. 8. Toncheva A. Mincheva R. Kancheva M. Manolova N. Rashkov I. Dubois P. Markova N. Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG Eur. Polym. J. 2016 75 223 233 10.1016/j.eurpolymj.2015.12.019 

  9. 9. Wang Y. Tong B. Hou S. Li M. Shen C. Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface Compos. Part A Appl. Sci. Manuf. 2011 42 66 74 10.1016/j.compositesa.2010.10.006 

  10. 10. Li M. Hu D. Wang Y. Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol) Polym. Eng. Sci. 2010 50 2298 2305 10.1002/pen.21755 

  11. 11. Sabir M.I. Xu X. Li L. A review on biodegradable polymeric materials for bone tissue engineering applications J. Mater. Sci. 2009 44 5713 5724 10.1007/s10853-009-3770-7 

  12. 12. Jawalkar S.S. Aminabhavi T.M. Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly(l-lactide) and poly(vinyl alcohol) blends Polymer 2006 47 8061 8071 10.1016/j.polymer.2006.09.030 

  13. 13. Martens P.J. Bryant S.J. Anseth K.S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering Biomacromolecules 2003 4 283 292 10.1021/bm025666v 12625723 

  14. 14. Nuttelman C.R. Henry S.M. Anseth K.S. Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds Biomaterials 2002 23 3617 3626 10.1016/S0142-9612(02)00093-5 12109687 

  15. 15. Koski A. Yim K. Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning Mater. Lett. 2004 58 493 497 10.1016/S0167-577X(03)00532-9 

  16. 16. Chiellini E. Corti A. D’Antone S. Solaro R. Biodegradation of poly (vinyl alcohol) based materials Prog. Polym. Sci. 2003 28 963 1014 10.1016/S0079-6700(02)00149-1 

  17. 17. Paradossi G. Cavalieri F. Chiessi E. Spagnoli C. Cowman M.K. Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications J. Mater. Sci. Mater. Med. 2003 14 687 691 10.1023/A:1024907615244 15348409 

  18. 18. Alexy P. Lacík I. Šimková B. Bakoš D. Prónayová N.A. Liptaj T. Hanzelová S. Várošová M. Effect of melt processing on thermo-mechanical degradation of poly(vinyl alcohol)s Polym. Degrad. Stab. 2004 85 823 830 10.1016/j.polymdegradstab.2004.02.011 

  19. 19. Gajria A.M. Davé V. Gross R.A. McCarthy S.P. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate) Polymer 1996 37 437 444 10.1016/0032-3861(96)82913-2 

  20. 20. Jang J. Lee D.K. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol Polymer 2003 44 8139 8146 10.1016/j.polymer.2003.10.015 

  21. 21. Tanigami T. Hanatani H. Yamaura K. Matsuzawa S. Melting of the blends between syndiotacticity-rich and atactic poly(vinyl alcohol)s Eur. Polym. J. 1999 35 1165 1171 10.1016/S0014-3057(98)00087-1 

  22. 22. Alexy P. Káchová D. Kršiak M. Bakoš D. Šimková B. Poly(vinyl alcohol) stabilisation in thermoplastic processing Polym. Degrad. Stab. 2002 78 413 421 10.1016/S0141-3910(02)00177-5 

  23. 23. Li H.Z. Chen S.C. Wang Y.Z. Thermoplastic PVA/PLA Blends with Improved Processability and Hydrophobicity Ind. Eng. Chem. Res. 2014 53 17355 17361 10.1021/ie502531w 

  24. 24. Nguyen Hoai An T. Bruenig H. der Landwehr M.A. Heinrich G. Controlling micro- and nanofibrillar morphology of polymer blends in low-speed melt spinning process. Part III: Fibrillation mechanism of PLA/PVA blends along the spinline J. Appl. Polym. Sci. 2016 133 48 

  25. 25. Nguyen Hoai An T. Bruenig H. Hinueber C. Heinrich G. Melt spinning of biodegradable nanofibrillary structures from Poly(lactic acid) and Poly (vinyl alcohol) blends Macromol. Mater. Eng. 2014 299 219 227 

  26. 26. Nguyen Hoai An T. Bruenig H. Boldt R. Heinrich G. Morphology development from rod-like to nanofibrillar structures of dispersed poly (lactic acid) phase in a binary blend with poly (vinyl alcohol) matrix along the spinline Polymer 2014 55 6354 6363 

  27. 27. Agarwal S. Wendorff J.H. Greiner A. Use of electrospinning technique for biomedical applications Polymer 2008 49 5603 5621 10.1016/j.polymer.2008.09.014 

  28. 28. Bognitzki M. Frese T. Steinhart M. Greiner A. Wendorff J.H. Schaper A. Hellwig M. Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends Polym. Eng. Sci. 2001 41 982 989 10.1002/pen.10799 

  29. 29. Teo W.E. Ramakrishna S. A review on electrospinning design and nanofibre assemblies Nanotechnology 2006 17 R89 10.1088/0957-4484/17/14/R01 19661572 

  30. 30. Gonçalves R.P. Silva F.F.F.D. Picciani P.H.S. Dias M.L. Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning Mater. Sci. Appl. 2015 6 189 199 10.4236/msa.2015.62022 

  31. 31. Arinstein A. Burman M. Gendelman O. Zussman E. Effect of supramolecular structure on polymer nanofibre elasticity Nat. Nanotechnol. 2007 2 59 62 10.1038/nnano.2006.172 18654209 

  32. 32. Xu Y. Gao Y. Wang X. Jiang J. Hou J. Li Q. Internal structure of amorphous electrospun nanofiber: Oriented molecular chains Macromol. Mater. Eng. 2017 302 1700054 10.1002/mame.201700054 

  33. 33. Xu C. Lv Q. Wu D. Wang Z. Polylactide/cellulose nanocrystal composites: A comparative study on cold and melt crystallization Cellulose 2017 24 2163 2175 10.1007/s10570-017-1233-x 

  34. 34. Wang H. Sun X. Seib P. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate J. Appl. Polym. Sci. 2001 82 1761 1767 10.1002/app.2018 

  35. 35. Skarmoutsou A. Lolas G. Charitidis C.A. Chatzinikolaidou M. Vamvakaki M. Farsari M. Nanomechanical properties of hybrid coatings for bone tissue engineering J. Mech. Behav. Biomed. Mater. 2013 25 48 62 10.1016/j.jmbbm.2013.05.003 23726922 

  36. 36. Narayanan G. Bhattacharjee M. Nair L.S. Laurencin C.T. Musculoskeletal tissue regeneration: The role of the stem cells Regen. Eng. Transl. Med. 2017 3 1 33 10.1007/s40883-017-0036-9 

  37. 37. Narayanan G. Nair L.S. Laurencin C.T. Regenerative engineering of the rotator cuff of the shoulder ACS Biomater. Sci. Eng. 2018 4 751 786 10.1021/acsbiomaterials.7b00631 

  38. 38. Cuenot S. Demoustier-Champagne S. Nysten B. Elastic modulus of polypyrrole nanotubes Phys. Rev. Lett. 2000 85 1690 1693 10.1103/PhysRevLett.85.1690 10970590 

  39. 39. Ji Y. Li B.Q. Ge S.R. Sokolov J.C. Rafailovich M.H. Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers Langmuir 2006 22 1321 1328 10.1021/la0525022 16430300 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로