최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Information sciences, v.480, 2019년, pp.420 - 437
Han, Sang-Eon (Corresponding author.)
Abstract The purpose of this paper is to introduce the notion of locally finite covering approximation (LFC-, for brevity) space (U, C) which is a generalization of a (finite) covering approximation space. Furthermore, for a subset X of the universe U, we develop two kinds of neighborhood systems d...
P. Alexandorff, D. Räume, Mat. sb, 1937, 2, 501-518.
Inf. Sci. Bonikowski 107 149 1998 10.1016/S0020-0255(97)10046-9 Extensions and intentions in the rough set theory
Inf. Sci. D’eer 336 21 2016 10.1016/j.ins.2015.12.007 Neighborhood operators for covering-based rough sets
Int. J. Approx. Reason. D’eer 88 295 2017 10.1016/j.ijar.2017.06.006 Notes on covering-based rough sets from topological point of view: relationships with general framework of dual approximation operators
Inf. Sci. Ge 204 70 2012 10.1016/j.ins.2012.04.005 Topological characterizations of covering for special covering-based uppper approximation operators
Inf. Sci. Han 176 1 120 2006 10.1016/j.ins.2005.01.002 Minimal simple closed 18-surfaces and a topological preservation of 3d surfaces
Inf. Sci. (Ny) Han 178 2 550 2008 10.1016/j.ins.2007.02.004 Equivalent (k0, k1)-covering and generalized digital lifting
Comp. Appl. Math. Han 36 127 2017 10.1007/s40314-015-0223-6 A digitization method of subspaces of the euclidean nd space associated with the khalimsky adjacency structure
Filomat Han 31 20 6313 2017 10.2298/FIL1720313H Topological graphs based on a new topology on zn and its applications
Appl. Math. Comput. Han 347 236 2019 10.1016/j.amc.2018.10.067 Estimation of the complexity of a digital image form the viewpoint of fixed point theory
Comp. Appl. Math. Han 32 521 2013 10.1007/s40314-013-0034-6 A compression of digital images derived from a khalimsky topological structure
Comp. Appl. Math. Kang 36 571 2017 10.1007/s40314-015-0245-0 Digitizations associated with several types of digital topological approaches
Conf. Math. Dep. Provoia Khalimsky 1970 Applications of connected ordered topological spaces in topology
Topol. Appl. Khalimsky 36 1 1 1991 10.1016/0166-8641(90)90031-V Computer graphics and connected topologies on finite ordered sets
Inf. Sci. Kondo 176 589 2006 10.1016/j.ins.2005.01.001 On the structure of generalized rough sets
Int. J. Approx. Reason. Lashin 40 35 2005 10.1016/j.ijar.2004.11.007 Rough set theory for topolgoical spaces
Math. Pract. Theory Li 39 145 2009 Topological properties of approximation spaces and their applications
T.Y. Lin, Neighborhood systems: a qualitative theory for fuzzy and rough sets, 1997, Raleigh NC. Advances in Machine Intelligence and Soft Computing, Bookwrights, 132-155.
Lin 107 1998 Rough Sets in Knowledge Discovery 1 Granular computing on binary relations i: data mining and neighborhood systems, II: rough set representations and belief functions
Liu 438 2008 IEEE International Conference on Granular Computing The sixth type of covering-based rough sets
Int. J. Approx. Reason. Liu 50 521 2009 10.1016/j.ijar.2008.11.001 A comparison of two types of rough sets induced by coverings
Int. J. Approx. Reason. Ma 53 901 2012 10.1016/j.ijar.2012.03.004 On some types of neighborhood-related covering rough sets
Int. J. Approx. Reason Ma 56 59 2015 10.1016/j.ijar.2014.08.003 Some twin approximation operators on covering approximation spaces
Amer. Math. Monthly Marcus 77 1119 1970 10.2307/2316121 Solution to problem 5712
Munkres 2000 Topology: A First Course
Int. J. Comput. Inf. Sci. Pawlak 11 341 1982 10.1007/BF01001956 Rough sets
Inf. Sci. Pawlak 147 1 2002 10.1016/S0020-0255(02)00197-4 Rough sets and intelligent data analysis
Int. J. Approx. Reason. Pei 52 231 2011 10.1016/j.ijar.2010.07.010 Topology vs generalized rough sets
Inf. Sci. Pawlak 177 1 28 2007 10.1016/j.ins.2006.06.006 Rough sets: some extensions
Polkowski 2002 Rough sets: mathematical foundations
Bull. Pol. Acad. Sci. Pomykala 35 653 1987 Approximation operations in approximation space
Qin volume 4481 34 2007 Proceedings of RSKT 2007, in: Lect. Notes Artif. Intell. On covering rough sets
Fuzzy Sets Syst. Qin 151 601 2005 10.1016/j.fss.2004.08.017 On the topological properties of fuzzy rough sets
Inf. Sci. Qin 109 4138 2008 10.1016/j.ins.2008.07.002 Generalized rough sets based on reflexive and transitive relations
Amer. Math. Monthly Rosenfeld 86 76 1979 10.1080/00029890.1979.11994873 Digital topology
Rough Sets Fuzzy Sets Data Min. Granul. Comput. Samanta 5908 127 2009 10.1007/978-3-642-10646-0_15 Covering based approaches to rough sets and implication lattices
Bull. Pol. Acad. Sci. Math. Skowron 36 477 1988 On topology in information system
Bull. Pol. Acad. Sci. Math. Wiweger 37 51 1988 On topological rough sets
Inf. Sci. Yao 111 239 1998 10.1016/S0020-0255(98)10006-3 Relational interpretations of neighborhood operators and rough set approximation operators
Inf. Sci. Yao 109 1-4 21 1998 10.1016/S0020-0255(98)00012-7 Constructive and algebraic methods of the theory of rough sets
Inf. Sci. Yao 111 239 1998 10.1016/S0020-0255(98)10006-3 Relational interpretations of neighborhood operators and rough set approximation operators
Inf. Sci. Yao 200 91 2012 10.1016/j.ins.2012.02.065 Covering based rough set approximations
Inf. Sci. Yu 263 141 2014 10.1016/j.ins.2013.09.040 On the topological properties fo generalized rough sets
Demonstr. Math. Zakowski 16 761 1983 Approximations in the space (u,c)
Int. J. Approx. Reason. Zhao 68 1 2016 10.1016/j.ijar.2015.09.003 On some types of covering rough sets from topological points of view
Inf. Sci. Zhu 179 210 2009 10.1016/j.ins.2008.09.015 Relationship between generalized rough sets based on binary relation and covering
Inf. Sci. Zhu 177 1499 2007 10.1016/j.ins.2006.06.009 Topological approaches to covering rough sets
Inf. Sci. Zhu 179 2478 2009 10.1016/j.ins.2009.02.013 Relationship among basic concepts in covering-based rough sets
IEEE Trans. Knowl. Data Eng. Zhu 8 1131 2007 10.1109/TKDE.2007.1044 On three types of covering based rough sets
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.