$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Heterogeneous Photocatalysis and Prospects of TiO2-Based Photocatalytic DeNOxing the Atmospheric Environment 원문보기

Catalysts, v.8 no.11, 2018년, pp.553 -   

Serpone, Nick (PhotoGreen Laboratory, Dipartimento di Chimica, Università)

Abstract AI-Helper 아이콘AI-Helper

This article reviews the efforts of the last two decades to deNOxify the atmospheric environment with TiO2-based photocatalytic materials supported on various cementitious-like substrates. Prior to undertaking this important aspect of applied photocatalysis with metal-oxide emiconductor photocatalys...

참고문헌 (188)

  1. Engineering Alliance, Inc. (2018, October 12). Air Quality Services, Types_of_sources_02-2012. Available online: https://www.eaincglobal.com/air-quality/attachment/types_of_sources_02-2012/. 

  2. (2018, October 12). Smog. Available online: https://en.wikipedia.org/wiki/Smog. 

  3. Kumar, A. (2010). Anthropogenic Air Pollution Sources. Air Quality, InTech Europe. Available online: http://www.intechopen.com/books/airquality/anthropogenic-air-pollution-sources. 

  4. (2018, October 12). European Union Emission Inventory Report 1990-2011 under the UNECE Convention on Long-Range Trans-Boundary Air Pollution (LRTAP). Available online: http://www.icopal-noxite.co.uk/nox-problem/nox-pollution.aspx. 

  5. United States Environmental Protection Agency (2018, October 12). Air Emission Sources, Available online: http://www. epa.gov/air/emissions/index.htm. 

  6. (2018, October 12). Tropospheric Ozone. Available online: https://en.wikipedia.org/wiki/Tropospheric_ozone#cite_note-5. 

  7. Reeves Potential for photochemical ozone formation in the troposphere over the North Atlantic as derived from aircraft observations during ACSOE J. Geophys. Res. 2002 107 4707 

  8. Deziel, C. (2017, April 25). How Is Photochemical Smog Formed?. Available online: https://sciencing.com/photochemical-smog-formed-6505511.html. 

  9. (2018, October 12). Health Effects of Nitrogen Oxides, Department of Employment, Economic Development and Innovation, Queensland Government, Australia, Available online: https://www.dnrm.qld.gov.au/data/assets/pdf_file/0020/212483/2-health-effects-of-nitrogen-dioxide.pdf. 

  10. McCarron Air Pollution and human health hazards: A compilation of air toxins acknowledged by the gas industry in Queensland’s Darling Downs Int. J. Environ. Stud. 2018 10.1080/00207233.2017.1413221 75 171 

  11. Chen Photocatalytic construction and building materials: From fundamentals to applications Build. Environ. 2009 10.1016/j.buildenv.2009.01.002 44 1899 

  12. Mendoza TiO2 and TiO2-SiO2 coated cement: Comparison of mechanic and photocatalytic properties Appl. Catal. B 2015 10.1016/j.apcatb.2014.09.079 178 155 

  13. Pei Photocatalytic oxidation of nitrogen monoxide and o-xylene by TiO2/ZnO/Bi2O3 nanofibers: Optimization, kinetic modeling and mechanisms Appl. Catal. B 2015 10.1016/j.apcatb.2015.03.021 174-175 515 

  14. Gallus Photocatalytic depollution in the Leopold II tunnel in Brussels: NOx abatement results Build. Environ. 2015 10.1016/j.buildenv.2014.10.032 84 125 

  15. Gallus Photocatalytic abatement results from a model street canyon Environ. Sci. Pollut. Res. 2015 10.1007/s11356-015-4926-4 22 18185 

  16. Sikkema Photocatalytic concrete pavements: Laboratory investigation of NO oxidation rate under varied environmental conditions Constr. Build. Mater. 2015 10.1016/j.conbuildmat.2015.10.005 100 305 

  17. Gandolfo The effectiveness of indoor photocatalytic paints on NOx and HONO levels Appl. Catal. B 2015 10.1016/j.apcatb.2014.11.011 166-167 84 

  18. Martinez BTEX abatement by photocatalytic TiO2- bearing coatings applied to cement mortars Build. Environ. 2014 10.1016/j.buildenv.2013.10.004 71 186 

  19. Folli TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry Cem. Concr. Res. 2012 10.1016/j.cemconres.2011.12.001 42 539 

  20. Karapati TiO2 functionalization for efficient NOx removal in photoactive cement Appl. Surf. Sci. 2014 10.1016/j.apsusc.2014.07.162 319 29 

  21. Mo Photocatalytic purification of volatile organic compounds in indoor air: A literature review Atmos. Environ. 2009 10.1016/j.atmosenv.2009.01.034 43 2229 

  22. Bartolomei Formation of indoor nitrous acid (HONO) by light-induced NO2 heterogeneous reactions with white wall paint Environ. Sci. Pollut. Res. 2014 10.1007/s11356-014-2836-5 21 9259 

  23. Langridge Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: A concern for air quality in urban areas? Atmos. Environ. 2009 10.1016/j.atmosenv.2009.06.046 43 5128 

  24. Ndour Photochemistry of mineral dust surface as a potential atmospheric renoxification process Geophys. Res. Lett. 2009 10.1029/2008GL036662 36 1 

  25. Mothes A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material Environ. Sci. Pollut. Res. 2016 10.1007/s11356-016-6612-6 23 15250 

  26. Monge Ozone formation from illuminated titanium dioxide surfaces J. Am. Chem. Soc. 2010 10.1021/ja1018755 132 8234 

  27. Emeline On the way to the creation of next generation photoactive materials Environ. Sci. Pollut. Res. 2012 10.1007/s11356-011-0665-3 19 3666 

  28. Serpone Semiconductor photocatalysis-Past, present, and future outlook J. Phys. Chem. Lett. 2012 10.1021/jz300071j 3 673 

  29. Braslavsky Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011) Pure Appl. Chem. 2011 10.1351/PAC-REC-09-09-36 83 931 

  30. Emeline Mechanistic studies of the formation of different states of oxygen on irradiated ZrO2 and the photocatalytic nature of photoprocesses from determination of turnover numbers J. Phys. Chem. B 2005 10.1021/jp046455i 109 2785 

  31. Emeline Photostimulated reactions at the surface of wide bandgap metal oxides {ZrO2 and TiO2}: Interdependence of rates of reactions on pressure- concentration and on light intensity J. Phys. Chem. B 1998 10.1021/jp9830373 102 10906 

  32. Emeline Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions. Prospect for distinguishing between the two kinetic models J. Photochem. Photobiol. A Chem. 2000 10.1016/S1010-6030(00)00225-2 133 89 

  33. Ollis Kinetics of liquid phase photocatalyzed reactions: An illuminating approach J. Phys. Chem. B 2005 10.1021/jp040236f 109 2439 

  34. Mills Kinetics of liquid phase semiconductor photoassisted reactions: Supporting observations for a pseudo-steady-state model J. Phys. Chem. B 2006 10.1021/jp062317c 110 14386 

  35. Graetzel, M. (1983). Energy Resources through Photochemistry and Catalysis, Academic Press. 

  36. Clayton Photosynthesis: Physical mechanisms and chemical patterns IUPAB Biophys. Ser. 1980 4 281 

  37. Braslavsky Glossary of terms used in photochemistry. (IUPAC Recommendations 2006) Pure Appl. Chem. 2007 10.1351/pac200779030293 79 293 

  38. Emeline Spectroscopic studies of pristine and fluorinated nano-ZrO2 in photostimulated heterogeneous processes J. Phys. Chem. C 2009 10.1021/jp809992g 113 4566 

  39. Serpone Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 2006 10.1021/jp065659r 110 24287 

  40. Serpone Visible-light-active titania photocatalysts. The case of N-doped TiO2s-Properties and some fundamental issues Int. J. Photoenergy 2008 1 1 

  41. Serpone Modeling heterogeneous photocatalysis by metal-oxide nanostructured semiconductor and insulator materials; Factors that affect the activity and selectivity of photocatalysts Res. Chem. Intermed. 2005 10.1163/1568567053956789 31 391 

  42. Emeline Spectral selectivity of photocatalyzed reactions on the surface of titanium dioxide nanoparticles J. Phys. Chem. B 2002 10.1021/jp021236n 106 12221 

  43. Emeline Spectral dependences of the activity and selectivity of N-doped TiO2 in photodegradation of phenols J. Photochem. Photobiol. A Chem. 2009 10.1016/j.jphotochem.2009.01.001 207 13 

  44. Emeline Quantum yields and their wavelength-dependence in the photoreduction of O2 and photooxidation of H2 on a visible-light-active N-doped TiO2 system Chem. Phys. Lett. 2008 10.1016/j.cplett.2008.02.010 454 279 

  45. Murakami Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength Appl. Catal. A 2008 10.1016/j.apcata.2008.06.040 348 148 

  46. Baye Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions J. Mol. Catal. A Chem. 2009 10.1016/j.molcata.2008.10.048 300 72 

  47. Murakami Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol J. Phys. Chem. C 2009 10.1021/jp809104t 113 3062 

  48. Baye Exposed crystal surface-controlled rutile TiO2 nanorods prepared by hydrothermal treatment in the presence of poly(vinyl)pyrrolidone Appl. Catal. B Environ. 2009 10.1016/j.apcatb.2009.06.034 91 634 

  49. Tachikawa Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis J. Am. Chem. Soc. 2011 10.1021/ja201415j 133 7197 

  50. Emeline Activity and selectivity of photocatalysts in photodegradation of phenols J. Hazard. Mater. 2012 10.1016/j.jhazmat.2011.11.078 211-212 154 

  51. Gerisher The role of oxygen in photooxidation of organic molecules on semiconductor particles J. Phys. Chem. 1991 10.1021/j100166a063 95 5261 

  52. Emeline Effect of surface photoreactions on the photocoloration of a wide band gap metal oxide: Probing whether surface reactions are photocatalytic J. Phys. Chem. B 2005 10.1021/jp0452047 109 5175 

  53. Terenin Optical investigations of the adsorption of gas molecules Uchenye Zapiski Leningrad. Gosudarst. Univ. Ser. Fiz. Nauk 1939 5 26 

  54. Terenin Optical investigations of activated adsorption Z. Fiz. Khim. 1940 14 1362 

  55. Kasparov Optical investigations of activated adsorption. I. Photodecomposition of NH3 adsorbed on catalysts Acta Physicochim. USSR 1941 15 343 

  56. Terenin Асtion of light on the gas adsorption by solids Discuss. Faraday Soc. 1959 10.1039/df9592800028 28 28 

  57. Ashcroft, N.W., and Mermin, N.D. (1976). Solid State Physics, Holt, Rinehart and Winston. 

  58. Pankove, J.I. (1971). Optical Processes in Semiconductors, Dover Publications. 

  59. Stoneham, A.M. (1975). Theory of Defects in Solids, Clarendon Press. 

  60. Henderson, B., and Werts, J.E. (1977). Defects in the Alkaline Earth Oxides, Taylor & Francis Ltd. 

  61. Kotomin Radiation-induced point defects in simple oxides Nucl. Instrum. Methods Phys. Res. B 1998 10.1016/S0168-583X(98)00079-2 141 1 

  62. Popov Basic properties of the F-type centers in halides, oxides and perovskites Nucl. Instrum. Methods Phys. Res. B 2010 10.1016/j.nimb.2010.05.053 268 3084 

  63. Crawford Recent developments in Al2O3 color-center research Semicond. Insul. 1982 5 599 

  64. Seebauer Charged point defects in semiconductors Mater. Sci. Eng. R 2006 10.1016/j.mser.2006.01.002 55 57 

  65. Schirmer O- bound small polarons in oxide materials J. Phys. Condens. Matter 2006 10.1088/0953-8984/18/43/R01 18 R667 

  66. Schirmer Holes bound as small polarons to acceptor defects in oxide materials: Why are their thermal ionization energies so high? J. Phys. Condens. Matter 2011 10.1088/0953-8984/23/33/334218 23 334218 

  67. Dolgov Trapped hole centers in MgO single crystals Phys. Solid State 2011 10.1134/S1063783411060084 53 1244 

  68. Kuznetsov Real-time in situ monitoring of optical absorption changes in visible-light-active TiO2 under light irradiation and temperature-programmed annealing J. Phys. Chem. C 2014 10.1021/jp5092619 118 27583 

  69. Kuznetsov Thermo- and photo-stimulated effects on the optical properties of rutile titania ceramic layers formed on titanium substrates Chem. Mater. 2013 10.1021/cm3031736 25 170 

  70. Kuznetsov Additional specific channel of photo-activation of solid semiconductors. A revisit of the thermo-/photo-stimulated bleaching of photo-induced Ti3+ color centers in visible-light-active photochromic rutile titania J. Phys. Chem. C 2018 10.1021/acs.jpcc.7b08998 122 13294 

  71. Zecchina Reflectance spectra of surface states in magnesium oxide and calcium oxide J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1975 71 1476 

  72. Zecchina Reflectance spectra of surface states in strontium oxide and barium oxide J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1976 72 2364 

  73. Kristianpoller Radiation effects in pure and doped Al2O3 crystals Nucl. Instrum. Methods Phys. Res. B 1998 10.1016/S0168-583X(98)00096-2 141 343 

  74. Kortov Spectroscopic characteristics of anionic centers in α-Al2O3 crystals bombarded by Cu+ and Ti+ J. Appl. Spectrosc. 2008 10.1007/s10812-008-9068-8 75 452 

  75. Izerrouken Absorption and photoluminescence study of Al2O3 single crystal irradiated with fast neutrons Nucl. Instrum. Methods Phys. Res. B 2010 10.1016/j.nimb.2010.05.024 268 2987 

  76. Itou Reversible photoinduced interconversion of color centers in α-Al2O3 prepared under vacuum J. Phys. Chem. C 2009 10.1021/jp908417m 113 20949 

  77. Emeline Spectral dependencies of the quantum yield of photochemical processes on the surface of wide band gap solids. 3. Gas/Solid systems J. Phys. Chem. B 2000 10.1021/jp9926589 104 2989 

  78. Kuznetsov Spectral manifestation of wide-band oxide own defects in photo- stimulated surface reactions Russ. J. Phys. Chem. 1991 65 1328 

  79. Lisachenko Photon-driven electron and atomic processes on solid-state surface in photoactivated spectroscopy and photocatalysis J. Photochem. Photobiol. A Chem. 2008 10.1016/j.jphotochem.2008.01.017 196 127 

  80. Zakharenko Spectral dependence of oxygen and carbon monoxide photoadsorption on rutile React. Kinet. Catal. Lett. 1979 10.1007/BF02075317 10 325 

  81. Volodin Influence of physically adsorbed oxygen on the separation of electron-hole pairs on anatase irradiated by visible light React. Kinet. Catal. Lett. 1979 10.1007/BF02074194 11 103 

  82. Emeline Spectral dependence of quantum yields in gas/solid heterogeneous photosystems. Influence of anatase/rutile content on the photo- stimulated adsorption of dioxygen and dihydrogen on titania J. Photochem. Photobiol. A. Chem. 2002 148 99 

  83. Komaguchi Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by sub-band-gap illumination J. Phys. Chem. C 2010 10.1021/jp909678e 114 1240 

  84. Kuznetsov On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens: Analysis and assignments J. Phys. Chem. C 2009 10.1021/jp901034t 113 15110 

  85. Artemiev, Y.M., and Ryabchuk, V.K. (1999). Introduction to Heterogeneous Photocatalysis (A Textbook), Saint Petersburg State University. (In Russian). 

  86. Siline, A.R., and Trukhin, A.N. (1985). Point Defects and Elementary Excitations in Crystalline and Non-Crystalline SiO2, Zinatne. 

  87. Ryvkin, S.M. (1964). Photoelectric Effects in Semiconductors, Consultants Bureau. 

  88. Delany Modification of a commercial NOx detector for high sensitivity Rev. Sci. Instrum. 1982 10.1063/1.1136901 12 1899 

  89. Wolf The NO-H2 reaction over Pd(III) Surf. Sci. 2000 10.1016/S0039-6028(00)00825-6 469 196 

  90. Environmental Agency of Japan (1991). Kankyo Hakusho, (In Japanese). 

  91. Cheremisonoff, P.N. (1989). Heterogeneous Photochemical Reactions and Processes in the Troposphere. Encyclopedia of Environmental Control Technology, Gulf Publishing. 

  92. Courbon Room-temperature interaction of N18O with ultraviolet-illuminated titanium dioxide J. Chem. Soc. Faraday Trans. 1 1984 10.1039/f19848003175 80 3175 

  93. Hori Heterogeneous photocatalytic oxidation of NO2 in aqueous suspension of various semiconductor powders Chem. Lett. 1985 10.1246/cl.1985.1429 14 1429 

  94. Anpo Approach to de-NOx-ing photocatalysis. II. Excited state of copper ions supported on silica and photocatalytic activity for NO decomposition Res. Chem. Intermed. 1991 10.1163/156856791X00345 15 225 

  95. Anpo The relationship between the local structure of copper(I) ions on Cu+/zeolite catalysts and their photocatalytic reactivities for the decomposition of NOx into N2 and O2 at 275 K Coord. Chem. Rev. 1998 10.1016/S0010-8545(98)90029-7 171 175 

  96. Anpo Design of unique titanium dioxide photocatalysts by an advanced metal-ion implantation method and photocatalytic reactions under visible light irradiation Res. Chem. lntermed. 1998 10.1163/156856798X00735 24 143 

  97. Ibusuki Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis J. Mol. Catal. 1994 10.1016/0304-5102(93)E0247-E 88 93 

  98. Negishi Surface structure of the TiO2 thin film photocatalyst J. Mater. Sci. 1998 10.1023/A:1004441829285 33 5789 

  99. Kominami Ultra-highly active titanium(IV) oxide photocatalyst prepared by hydrothermal crystallization from titanium(IV) alkoxide in organic solvents Chem. Lett. 1995 10.1246/cl.1995.693 24 693 

  100. Kominami Photocatalytic mineralization of acetic acid in aerated aqueous suspension of ultra-highly active titanium(IV) oxide prepared by hydrothermal crystallization in toluene Chem. Lett. 1996 10.1246/cl.1996.1051 25 1051 

  101. Hashimoto Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas J. Photochem. Photobiol. A Chem. 2000 10.1016/S1010-6030(00)00329-4 136 103 

  102. Lim Photocatalytic decomposition of NO by TiO2 particles J. Photochem. Photobiol. A Chem. 2000 10.1016/S1010-6030(00)00265-3 134 209 

  103. Nakamura Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal J. Mol. Catal. A Chem. 2000 10.1016/S1381-1169(00)00362-9 161 205 

  104. Zhang Investigations of TiO2 photocatalysts for the decomposition of NO in the flow system: The role of pretreatment and reaction conditions in the photocatalytic efficiency J. Catal. 2001 10.1006/jcat.2000.3076 198 1 

  105. Tanaka Photoassisted NO reduction with NH3 over TiO2 photocatalyst Chem. Commun. 2002 10.1039/b208349c 22 2742 

  106. Dalton Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach Environ. Pollut. 2002 10.1016/S0269-7491(02)00107-0 120 415 

  107. Devahasdin TiO2 photocatalytic oxidation of nitric oxide: Transient behavior and reaction kinetics J. Photochem. Photobiol. A Chem. 2003 10.1016/S1010-6030(03)00005-4 156 161 

  108. Toma Photocatalytic removal of nitrogen oxides via titanium dioxide Environ. Chem. Lett. 2004 10.1007/s10311-004-0087-2 2 117 

  109. Bowering Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25 Appl. Catal. B Environ. 2006 10.1016/j.apcatb.2005.07.014 62 208 

  110. Roy Creation of redox adsorption sites by Pd2+ ion substitution in nano-TiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition J. Phys. Chem. C 2007 10.1021/jp066145v 111 8153 

  111. Yin Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading J. Phys. Chem. C 2008 10.1021/jp803371s 112 12425 

  112. Roy Catalysis for NOx abatement Appl. Energy 2009 10.1016/j.apenergy.2009.03.022 86 2283 

  113. Skalska Trends in NOx abatement: A review Sci. Total Environ. 2010 10.1016/j.scitotenv.2010.06.001 408 3976 

  114. Heo Combination of photocatalysis and HC/SCR for improved activity and durability of deNOx catalysts Environ. Sci. Technol. 2013 10.1021/es304188k 47 3657 

  115. International Energy Agency (2016). 2016 Energy and Air Pollution, World Energy Outlook Special Report. 

  116. (1999). Nitrogen Oxides (NOx), Why and How They Are Controlled, Technical Bulletin. 

  117. Fujishima TiO2 photocatalysis and related surface phenomena Surf. Sci. Rep. 2008 10.1016/j.surfrep.2008.10.001 63 515 

  118. Hanus Nanotechnology innovations for the construction industry Prog. Mater. Sci. 2013 10.1016/j.pmatsci.2013.04.001 58 1056 

  119. Fresno Photocatalytic materials: Recent achievements and near future trends J. Mater. Chem. A 2014 10.1039/C3TA13793G 2 2863 

  120. (2018, October 12). Church of 2000/Richard Meier & Partners. Available online: https://www.archdaily.com/20105/church-of-2000-richard-meier. 

  121. Borgarello, E. (2009). TX Active® Principio Attivo Fotocatalitico-APPROFONDIMENTO TECNICO, Italcementi, Italcementi Group. Available online: https://www.construction21.org/italia/data/sources/users/62/txactiveapprofondimentoottobre2009ita.pdf. 

  122. Murata, Y., Kamitami, K., and Takeuchi, K. (2000, January 17-21). Air purifying blocks based on photocatalysis. Proceedings of the JIPEA World Congress, Tokyo, Japan. 

  123. Guerrini, G.L., and Peccati, E. (2008). TUNNEL “UMBERTO I” IN ROME Monitoring Program Results, CTG-Italcementi Group. Available online: http://www.tiocem.pl/files/references/TX_Active_Tunnel_Umberto_I_ENG.pdf. 

  124. Guerini, G.L. (2018, October 12). Available online: http://www.cristalactiv.com/uploads/speaker/Case_Study_The_Italcementi_TX_ Active_Story_Gian_Luca_Guerrini.pdf. 

  125. Martinez Degradation of NO using photocatalytic coatings applied to different substrates Build. Environ. 2011 10.1016/j.buildenv.2011.03.001 46 1808 

  126. Evaluation of the influence of environmental conditions on the efficiency of photocatalytic coatings in the degradation of nitrogen oxides (NOx) Build. Environ. 2012 10.1016/j.buildenv.2011.09.016 49 117 

  127. Ifang Standardization methods for testing photocatalytic air remediation materials: Problems and solution Atmos. Environ. 2014 10.1016/j.atmosenv.2014.04.001 91 154 

  128. Zouzelka Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology Appl. Catal. B Environ. 2017 10.1016/j.apcatb.2017.06.009 217 466 

  129. Macphee Photocatalytic concretes-The interface between photocatalysis and cement chemistry Cem. Concr. Res. 2016 10.1016/j.cemconres.2016.03.007 85 48 

  130. Horgnies NOx de-pollution by hardened concrete and the influence of activated charcoal additions Cem. Concr. Res. 2012 10.1016/j.cemconres.2012.06.007 42 1348 

  131. Bloh Photocatalytic NOx abatement: Why the selectivity matters RSC Adv. 2014 10.1039/C4RA07916G 4 45726 

  132. Yang Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement Appl. Catal. B Environ. 2018 10.1016/j.apcatb.2017.10.013 222 200 

  133. Erme Adsorption of nitrogen oxides on TiO2 surface as a function of NO2 and N2O5 fraction in the gas phase Langmuir 2018 10.1021/acs.langmuir.7b03864 34 6338 

  134. (2006). Official Presentation-Innovative Façade Coatings with De-soiling and De-polluting Properties. The PICADA Project-Photocatalytic Innovative Coverings Applications for Depollution Assessment, GTM Construction. EC Project No. GRD1-2001-40449. 

  135. Boonen Recent photocatalytic applications for air purification in Belgium Coatings 2005 10.3390/coatings4030553 4 553 

  136. Maggos Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels Environ. Monit. Assess. 2008 10.1007/s10661-007-9722-2 136 35 

  137. Guerrini, G.L., and Peccati, E. (2007, January 8-9). Photocatalytic cementitious roads for de-pollution. Proceedings of the RILEM International Symposium on Photocatalysis ‘Environment and Construction Materials’, Florence, Italy. 

  138. Guerrini Photocatalytic performances in a city tunnel in Rome: NOx monitoring results Constr. Build. Mater. 2012 10.1016/j.conbuildmat.2011.07.065 27 165 

  139. Cassar Photocatalysis of cementitious materials: Clean buildings and clean air MRS Bull. 2004 10.1557/mrs2004.99 29 328 

  140. Cassar, L., Pepe, C., Tognon, G., Guerrini, G.L., and Amadelli, R. (2003, January 11-16). White cement for architectural concrete possessing photocatalytic properties. Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, South Africa. 

  141. Guerrini, G.L., Plassais, A., Pepe, C., and Cassar, L. (2007, January 8-9). Use of photocatalytic cementitious materials for self-cleaning applications. Proceedings of the RILEM International Symposium on Photocatalysis ‘Environment and Construction Materials’, Florence, Italy. 

  142. Guerrini, G.L., and Corazza, F. (2008, January 28-30). White cement and photocatalysis Part 1: Fundamentals. Proceedings of the First Arab International Conference and Exhibition on The Uses of White Cement, Cairo, Egypt. Available online: https://www.researchgate.net/publication/266358310_WHITE_CEMENT_AND_PHOTOCATALYSIS_PART_1_FUNDAMENTALS. 

  143. (2018, September 28). NOx Gas. Available online: http://www.airlite.com/air-quality/nox-gas/. 

  144. Borgarello Photochemical deposition and photorecovery of gold using semiconductor dispersions. A practical application Nouv. J. Chim. 1985 9 743 

  145. Borgarello Photocatalyzed transformation of cyanide to thio-cyanate by rhodium-loaded cadmium sulfide in alkaline aqueous sulfide media Inorg. Chem. 1986 10.1021/ic00233a007 25 2135 

  146. Borgarello Light-induced reduction of Rh(III) and Pd(II) on TiO2 dispersions, and the selective photochemical separation and recovery of Au(III), Pt(IV), and Rh(III) from dilute solutions Inorg. Chem. 1986 10.1021/ic00245a010 25 4499 

  147. Serpone Photo-chemical reduction of gold(III) on semiconductor dispersions of TiO2 in the presence of cyanide ions: Disposal of CN− with H2O2 J. Photochem. 1987 10.1016/0047-2670(87)80027-8 36 373 

  148. Serpone AM1 simulated sunlight photoreduction and elimination of Hg(II) and CH3Hg(II) chloride salts from aqueous suspensions of titanium dioxide Sol. Energy 1987 10.1016/0038-092X(87)90056-9 39 491 

  149. (2018, September 18). PICADA PROJECT-Performance Process Protocol, Workpackage 7 January 2006. Available online: http://www.picada-project.com/domino/SitePicada/Picada.nsf/1f9d19927a32e752c12569ab002c7ff8/50905a4f28b6ae58c12571320033f015/$FILE/D20.pdf. 

  150. Gurol, M.D. (2018, September 18). Photocatalytic Construction Materials and Reduction in Air Pollutants, San Diego State University, San Diego, CA, USA, March 2006. Available online: https://www.csus.edu/calst/FRFP/PHOTO-CATALYTIC.pdf. 

  151. Maggos, Th., Kotzias, D., Bartzis, J.G., Leva, P., Bellintani, A., and Vasilakos, C. (2005, January 29-31). Investigations of TiO2-containing construction materials for the decomposition of NOx in environmental chambers. Proceedings of the 5th International Conference on Urban Air Quality, Valencia, Spain. 

  152. (2018, September 29). The 2010 Report Dutch Air Quality Innovation Programme Concluded, Available online: https://laqm.defra.gov.uk/documents/Dutch_Air_Quality_Innovation_Programme.pdf. 

  153. Jacobi, S. (2018, September 30). NO2-Reduzierung Durch Photokatalytisch Wirksame Oberflächen?. Available online: https://www.hlnug.de/fileadmin/dokumente/das_hlug/jahresbericht/2012/jb2012_059-066_I2_Jacobi_final.pdf. 

  154. (2018, October 01). Photocatalytic Titanium Dioxide-A Demonstrated and Proven Technology (Cristal ACTiv™), Cristal Global, London, UK. Available online: http://www.cristalactiv.com/uploads/case/casePhotocatalysis%20-%20English.pdf. 

  155. Burton Titanium dioxide photocleans polluted air Environ. Health Perspect. 2012 10.1289/ehp.120-a229 120 A229 

  156. Laufs Conversion of nitrogen oxides on commercial photocatalytic dispersion paints Atmos. Environ. 2010 10.1016/j.atmosenv.2010.03.038 44 2341 

  157. Ballari Full scale demonstration of air-purifying pavement J. Hazard. Mater. 2013 10.1016/j.jhazmat.2013.02.012 254-255 406 

  158. Boonen Construction of a photo- catalytic de-polluting field site in the Leopold II tunnel in Brussels J. Environ. Manag. 2015 10.1016/j.jenvman.2015.03.001 155 136 

  159. Fraunhofer (2015, May 11). Clean Air by Airclean®. Available online: http://www.ime.fraunhofer.de/content/dam/ime/de/documents/AOe/2009_2010_Saubere%20Luft%20durch%20 Pflastersteine_s.pdf. 

  160. Tera (2015, May 11). In Situ Study of the Air Pollution Mitigating Properties of Photocatalytic Coating, Tera Environement, (Contract Number 0941C0978), Report for ADEME and Rhone-Alpe region, France. Available online: http://www.air-rhonealpes.fr/site/media/telecharger/651413. 

  161. 10.1039/b609005b Gustafsson, R.J., Orlov, A., Griffiths, P.T., Cox, R.A., and Lambert, R.M. (2006). Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: Implications for photocatalysis and atmospheric chemistry. Chem. Commun., 3936-3938. 

  162. Ndour Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations Geophys. Res. Lett. 2008 10.1029/2007GL032006 35 L05812 

  163. Beaumont Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces Chem. Phys. Chem. 2009 10.1002/cphc.200800613 10 331 

  164. Monge Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-An air quality remediation process? Phys. Chem. Chem. Phys. 2010 10.1039/b925785c 12 8991 

  165. Mothes, F., and Herrmann, H. (2018, January 21). Lab and field studies on photocatalysis to improve urban air quality-Results from the PhotoPAQ project. Proceedings of the Life MINOx-STREET Project Ending Meeting: Results and Conclusions, CIEMAT, Madrid, Spain. 

  166. Flassak, T. (2012, January 14-17). Numerical simulation of the depollution effectiveness of photocatalytic coverings in street canyons. Proceedings of the Photocatalysis: Science and Application for Urban Air Quality, The 2012 LIFE+ PhotoPaq Conference, Proticcio, Island of Corsica, France. 

  167. Fischer, H.-B., Bode, K.-A., and Beuthan, C. (2012, January 12-15). Numerische simulation der wirksamkeit photokatalytisch aktiver betonoberflächen. Proceedings of the Internationale Baustofftagung 18, Ibausil (Proceedings), Bauhaus-University Weimar, Weimar, Germany. 

  168. Pujadas, M., Palacios, M., Nunez, L., German, M., Fernandez-Pampillon, J., Iglesias, J.D., and Santiago, J.L. (2016, January 9-12). Real scale demonstration of the depolluting capabilities of a photocatalytic pavement in a real urban area. Proceedings of the 17th International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes, Budapest, Hungary. 

  169. Pujadas, M., Palacios, M., Nunez, L., German, M., Fernandez-Pampillon, J., Sanchez, B., Santiago, J.L., Sanchez, B., Munos, R., and Moral, F. (2017, January 9-12). Real scale tests of the depolluting capabilities of a photocatalytic sidewalk pavement and a façade in an urban scenario. Proceedings of the 18th International Conference on Harmonization within Atmospheric Dispersion Modelling for Regulatory Purposes, Bologna, Italy. 

  170. Palacios, M., Pujadas, M., Nunez, L., Sanchez, B.S., Santiago, J.L., Martilli, A., Suarez, S., and Cabrero, B.S. (2017, January 26-27). Monitoring and modeling NOx removal efficiency of photocatalytic materials: A strategy for urban air quality management. Proceedings of the Life-Platform Meeting on Air, Barcelona, Spain. 

  171. Pujadas, M., Palacios, M., Nunez, L., Fernandez-Pampillon, J., and German, M. (2018, January 12-16). Characterization of the NOx depolluting effect of photocatalytic materials in a medium-scale tunnel reactor. Proceedings of the Air Quality Meeting, Barcelona, Spain. 

  172. Wang Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric Chemosphere 2007 10.1016/j.chemosphere.2006.04.071 66 185 

  173. Anpo Design of photocatalyst encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature Catal. Today 1997 10.1016/S0920-5861(97)00097-7 39 159 

  174. Anpo Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation: The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts Curr. Opin. Solid State Mater. Sci. 2002 10.1016/S1359-0286(02)00107-9 6 381 

  175. Yamashita Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework Appl. Surf. Sci. 1997 10.1016/S0169-4332(97)00311-5 121 305 

  176. Wu Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: Role of oxygen vacancies and iron dopant J. Am. Chem. Soc. 2012 10.1021/ja302246b 134 9369 

  177. Hu Characterization of the local structures of Ti-MCM-41 and their photocatalytic reactivity for the decomposition of NO into N2 and O2 J. Phys. Chem. B 2006 10.1021/jp058240u 110 1680 

  178. 10.1021/acs.jpcc.8b06135 Cao, Y., Yu, M., Qi, S., Ren, Z., Yan, S., Hu, S., and Xu, M. (2018). Nitric oxide reaction pathways on rutile TiO2(110): The influence of surface defects and reconstructions. J. Phys. Chem. C. 

  179. Kuznetsov, V.N., Glazkova, N.I., Mikhaylov, R.V., Kozhevina, A.V., and Serpone, N. (2018). Photophysics of color centers in visible-light-active rutile titania. Evidence of the photoformation and trapping of charge carriers from advanced diffuse reflectance spectroscopy and mass spectrometry. Catal. Today. 

  180. Aradi Quantitative theory of the oxygen vacancy and carrier self-trapping in bulk TiO2 Phys. Rev. B 2012 10.1103/PhysRevB.86.195206 86 195206 

  181. Cotton, F.A., and Wilkinson, G. (1988). Advanced Inorganic Chemistry, John Wiley & Sons. [5th ed.]. 

  182. 10.1039/c39860001272 Iwamoto, M., Furukawa, H., Mine, Y., Uemura, F., Mikuriya, S.-I., and Kagawa, S. (1986). Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. J. Chem. Soc. Chem. Commun., 1272-1273. 

  183. Chiu Nitrosation of alkenes by nitric oxide: Crystal structures of bis-(1-nitroso-2-nitro-cyclohexane) and bis-(1-nitroso-2-nitro-1-phenylethane) Polyhedron 1985 10.1016/S0277-5387(00)86714-5 4 1941 

  184. Greenwood, N.N., and Earnshaw, A. (1997). Chemistry of the Elements, Butterworth-Heinemann. [2nd ed.]. 

  185. Thiemann, M., Scheibler, E., and Wiegand, K.W. (2005). Nitric Acid, Nitrous Acid, and Nitrogen Oxides. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH. 

  186. Wingen The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism Phys. Chem. Chem. Phys. 2003 10.1039/b208564j 5 223 

  187. Sivachandrian Investigation of NO and NO2 adsorption mechanisms on TiO2 at room temperature Appl. Catal. B Environ. 2013 10.1016/j.apcatb.2013.04.073 142-143 196 

  188. Haubrich In Situ ambient pressure studies of the chemistry of NO2 and water on rutile TiO2(110) Langmuir 2010 10.1021/la904141k 26 2445 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로