$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of Image Processing for Crack Detection on Concrete Structures through Terrestrial Laser Scanning Associated with the Octree Structure 원문보기

Applied sciences, v.8 no.12, 2018년, pp.2373 -   

Cho, Soojin (Department of Civil Engineering, University of Seoul, Seoul 02504, Korea) ,  Park, Seunghee (School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, Gyeonggi 440-746, Korea) ,  Cha, Gichun (Department of Convergence Engineering for Future City, Sungkyunkwan University, Gyeonggi 440-746, Korea) ,  Oh, Taekeun (Department of Safety Engineering, Incheon National University, Incheon 406-772, Korea)

Abstract AI-Helper 아이콘AI-Helper

Terrestrial laser scanning (TLS) provides a rapid remote sensing technique to model 3D objects but can also be used to assess the surface condition of structures. In this study, an effective image processing technique is proposed for crack detection on images extracted from the octree structure of T...

참고문헌 (56)

  1. Olsen Terrestrial laser scanning-based structural damage assessment J. Comput. Civ. Eng. 2009 10.1061/(ASCE)CP.1943-5487.0000028 24 264 

  2. 10.22260/ISARC2013/0034 Anil, E.B., Akinci, B., Garrett, J.H., and Kurc, O. (2013, January 11-15). Characterization of laser scanners for detecting cracks for post-earthquake damage inspection. Proceedings of the International Symposium on Automation and Robotics in Construction and Mining (ISARC), Montreal, QC, Canada. 

  3. Giri Detection of surface crack in concrete using measurement technique with laser displacement sensor IEEE Trans. Instrum. Meas. 2016 10.1109/TIM.2016.2541358 65 1951 

  4. Laefer Crack detection limits in unit based masonry with terrestrial laser scanning NDT & E Int. 2014 10.1016/j.ndteint.2013.11.001 62 66 

  5. Li Crack imaging by scanning pulsed laser spot thermography NDT & E Int. 2011 10.1016/j.ndteint.2010.08.006 44 216 

  6. Kim Localization and quantification of concrete spalling defects using terrestrial laser scanning J. Comput. Civ. Eng. 2014 10.1061/(ASCE)CP.1943-5487.0000415 29 04014086 

  7. Puente Assessment of cracks on concrete bridges using image processing supported by laser scanning survey Constr. Build. Mater. 2017 10.1016/j.conbuildmat.2017.04.096 146 668 

  8. Xu Concrete crack measurement and analysis based on terrestrial laser scanning technology Sens. Transducers 2015 186 168 

  9. Tsakiri, M., Lichti, D., and Pfeifer, N. (2006, January 22-24). Terrestrial Laser Scanning for Deformation Monitoring. Proceedings of the 3rd IAG/12th FIG Symposium, Baden, Austria. 

  10. Van Gosliga, R., Lindenbergh, R., and Pfeifer, N. (2006, January 25-27). Deformation analysis of a bored tunnel by means of terrestrial laser scanning. Proceedings of the International Archives of the Photogrammetry, Dresden, Germany. 

  11. Chang, Y., LAI, S., Peng, S., and Chang, K. (2008, January 14-19). Non-Contact Bridge Deflection Measurement: Application of Laser Technology. Proceedings of the Integrating Generations FIG Working Week, Stockholm, Sweden. 

  12. Koch Three-dimensional NURBS surface estimated by lofting method J. Adv. Manuf. Technol. 2010 10.1007/s00170-009-2460-6 49 1059 

  13. Jafari Deformation tracking in 3D point clouds via statistical sampling of direct cloud-to-cloud distances J. Nondestruct. Eval. 2017 10.1007/s10921-017-0444-2 36 65 

  14. Khaloo Automatic Detection of Structural Deficiencies Using 4D Hue-Assisted Analysis of Color Point Clouds Conf. Proc. Soc. Exp. Mech. 2019 10.1007/978-3-319-74421-6_26 2 197 

  15. Dai Surface damage quantification of the post-earthquake building based on terrestrial laser scan data Struct. Control Health 2018 10.1002/stc.2210 25 e2210 

  16. Dawood Computer vision-based model for moisture marks detection and recognition in subway networks J. Comput. Civ. Eng. 2017 10.1061/(ASCE)CP.1943-5487.0000728 32 04017079 

  17. Law Terrestrial laser scanner assessment of deteriorating concrete structures Struct. Control Health 2018 10.1002/stc.2156 25 e2156 

  18. Song An application of finite element model updating for damage assessment of a two-story reinforced concrete building and comparison with lidar Struct. Health Monit. 2018 10.1177/1475921717737970 17 1129 

  19. Ellmann Terrestrial laser scanning for the monitoring of bridge load tests-two case studies Surv. Rev. 2018 10.1080/00396265.2016.1266117 50 270 

  20. 10.1007/978-3-319-68646-2_12 Baeza, F.J., Ivorra, S., Bru, D., and Varona, F.B. (2018). Structural health monitoring systems for smart heritage and infrastructures in Spain. Mechatronics for Cultural Heritage and Civil Engineering, Springer. 

  21. Laefer Reliability of crack detection methods for baseline condition assessments J. Infrastruct. Syst. 2010 10.1061/(ASCE)1076-0342(2010)16:2(129) 16 129 

  22. Koch A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure Adv. Eng. Inform. 2015 10.1016/j.aei.2015.01.008 29 196 

  23. Chae Neuro-fuzzy approaches for sanitary sewer pipeline condition assessment J. Comput. Civ. Eng. 2001 10.1061/(ASCE)0887-3801(2001)15:1(4) 15 4 

  24. Khanfar Microwave near-field nondestructive detection and characterization of disbonds in concrete structures using fuzzy logic techniques Compos. Struct. 2003 10.1016/j.compstruct.2003.09.033 62 335 

  25. Abudayyeh Analysis of edge-detection techniques for crack identification in bridges J. Comput. Civ. Eng. 2003 10.1061/(ASCE)0887-3801(2003)17:4(255) 17 255 

  26. Guo Automated defect detection for sewer pipeline inspection and condition assessment Autom. Constr. 2009 10.1016/j.autcon.2008.12.003 18 587 

  27. Ng Automatic thresholding for defect detection Pattern Recogn. Lett. 2006 10.1016/j.patrec.2006.03.009 27 1644 

  28. Sinha Neuro-fuzzy network for the classification of buried pipe defects Autom. Constr. 2006 10.1016/j.autcon.2005.02.005 15 73 

  29. Moon, H., and Kim, J. (July, January 29). Intelligent crack detecting algorithm on the concrete crack image using neural network. Proceedings of the 28th ISARC, Seoul, Korea. 

  30. Kawamura Proposal of a crack pattern extraction method from digital images using an interactive genetic algorithm JSCE 2003 742 115 

  31. 10.1109/PacificGraphics.2010.20 Goswami, P., Zhang, Y., Pajarola, R., and Gobbetti, E. (2010, January 25-27). High Quality Interactive Rendering of Massive Point Models using Multi-way kd-Trees. Proceedings of the 18th Pacific Conference on Computer Graphics and Applications 2010, Hangzhou, China. 

  32. Saxena Octree-based automatic mesh generation for non-manifold domains Eng. Comput. 1995 10.1007/BF01230440 11 1 

  33. Woo A new segmentation method for point cloud data Int. J. Mach Tools Manuf. 2002 10.1016/S0890-6955(01)00120-1 42 167 

  34. Wang, M., and Tseng, Y.H. (2004, January 12-23). Lidar data segmentation and classification based on octree structure. Proceedings of the XXth ISPRS Congress, Istanbul, Turkey. 

  35. Schnabel Efficient RANSAC for point-cloud shape detection Comput. Gr. Forum 2007 10.1111/j.1467-8659.2007.01016.x 26 214 

  36. Cho 3D building modeling using aerial LiDAR data Korean J. Remote Sens. 2008 24 141 

  37. 10.1007/978-3-642-04319-2_5 Marechal, L. (2009, January 25-28). Advances in octree-based all hexahedral mesh generation: Handling sharp features. Proceedings of the 18th International Meshing Roundtable, Salt Lake City, UT, USA. 

  38. Han Comparison of 3D R-tree and octree to index large point clouds from a 3D terrestrial laser scanner Korean J. Geomat. 2011 10.7848/ksgpc.2011.29.1.39 29 531 

  39. Wang SigVox-A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds ISPRS J Photogramm. 2017 10.1016/j.isprsjprs.2017.03.012 128 111 

  40. Richard, O.D., and Peter, E.H. (1973). Pattern Classification and Scene Analysis, John Wiley and Sons. 

  41. Fujita A robust automatic crack detection method from noisy concrete surfaces Mach. Vis. Appl. 2010 22 1 

  42. Otsu A threshold selection method from gray-level histograms IEEE. Trans. Syst. Man Cybern. C 1979 10.1109/TSMC.1979.4310076 9 62 

  43. 10.2174/97816080534071120101 Fukuchi, T., and Shiina, T. (2012). Industrial Applications of Laser Remote Sensing, Bentham Science Publishers. 

  44. Hocken, R.J., and Pereira, P.H. (2012). Coordinate Measuring Machines and Systems, CRC Press. 

  45. Wu A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data Remote. Sens 2013 10.3390/rs5020584 5 584 

  46. Kim Compression of Normal Vectors using Octree Encoding Soc. CAD/CAM Eng. 2007 12 109 

  47. Ryu Efficient Octree Encoding for Real Time Transmission of 3D Geometry Data Through Internet Soc. CAD/CAM Eng. 2002 7 262 

  48. 10.1145/800031.808576 Tamminen, M. (1984, January 23-27). Efficient Octree Conversion by Connectivity Labeling. Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques, Minneapolis, MN, USA. 

  49. Weiss, N.A. (2005). A Course in Probability, Addison-Wesley. 

  50. Hornung OctoMap: An efficient probabilistic 3D mapping framework based on octrees Auton. Robots 2013 10.1007/s10514-012-9321-0 34 189 

  51. Ahmed Detection crack in image using Otsu method and multiple filtering in image processing techniques Optik 2015 127 1 

  52. Liu Automatic quantification of crack patterns by image processing Comput. Geosci. 2013 10.1016/j.cageo.2013.04.008 57 77 

  53. Adhikari Image-based retrieval of concrete crack properties for bridge inspection Autom. Constr. 2014 10.1016/j.autcon.2013.06.011 39 180 

  54. Liu Automated assessment of cracks on concrete surfaces using adaptive digital image processing Smart Struct. Syst. 2014 10.12989/sss.2014.14.4.719 14 719 

  55. Liu Concrete crack assessment using digital image processing and 3D scene reconstruction J. Comput. Civ. Eng. 2014 10.1061/(ASCE)CP.1943-5487.0000446 30 04014124 

  56. Korea Ministry of Land, Infrastructure, and Transport (MLIT) and Korea (2017). Guideline for Regular and Detailed Inspection, Korea Infrastructure Safety and Technology Corporation (KISTeC). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로