$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment

ACS catalysis, v.8 no.12, 2018년, pp.11542 - 11563  

Jeon, Tae Hwa (Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea) ,  Koo, Min Seok (Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea) ,  Kim, Hyejin (Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Korea) ,  Choi, Wonyong

Abstract AI-Helper 아이콘AI-Helper

The solar-driven photo(electro)catalytic process is a key technology for utilization of solar energy. It is being intensively investigated for application to environmental remediation and solar fuel production. Although both environmental and energy applications operate on the basis of the same prin...

주제어

참고문헌 (186)

  1. Park, Hyunwoong, Kim, Hyoung-il, Moon, Gun-hee, Choi, Wonyong. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & environmental science, vol.9, no.2, 411-433.

  2. Park, H., Park, Y., Kim, W., Choi, W.. Surface modification of TiO2 photocatalyst for environmental applications. Journal of photochemistry and photobiology. C, Photochemistry reviews, vol.15, 1-20.

  3. Walter, Michael G., Warren, Emily L., McKone, James R., Boettcher, Shannon W., Mi, Qixi, Santori, Elizabeth A., Lewis, Nathan S.. Solar Water Splitting Cells. Chemical reviews, vol.110, no.11, 6446-6473.

  4. Nakata, K., Fujishima, A.. TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology. C, Photochemistry reviews, vol.13, no.3, 169-189.

  5. Lan, Yucheng, Lu, Yalin, Ren, Zhifeng. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano energy, vol.2, no.5, 1031-1045.

  6. Friedmann, Donia, Hakki, Amer, Kim, Hyejin, Choi, Wonyong, Bahnemann, Detlef. Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green chemistry : an international journal and green chemistry resource : GC, vol.18, no.20, 5391-5411.

  7. Chong, Meng Nan, Jin, Bo, Chow, Christopher W.K., Saint, Chris. Recent developments in photocatalytic water treatment technology: A review. Water research, vol.44, no.10, 2997-3027.

  8. 10.1002/9783527645404 Lu, M.; Pichat, P. Photocatalysis and Water Purification: From Fundamentals to Recent Applications ; John Wiley & Sons, 2013; pp 1-397. 

  9. Li, Kan, Peng, Bosi, Peng, Tianyou. Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS catalysis, vol.6, no.11, 7485-7527.

  10. Colmenares, Juan Carlos, Luque, Rafael. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society reviews, vol.43, no.3, 765-778.

  11. Takanabe, Kazuhiro. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS catalysis, vol.7, no.11, 8006-8022.

  12. Kou, Jiahui, Lu, Chunhua, Wang, Jian, Chen, Yukai, Xu, Zhongzi, Varma, Rajender S.. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chemical reviews, vol.117, no.3, 1445-1514.

  13. Hoffmann, Michael R., Martin, Scot T., Choi, Wonyong, Bahnemann, Detlef W.. Environmental Applications of Semiconductor Photocatalysis. Chemical reviews, vol.95, no.1, 69-96.

  14. Gligorovski, Sasho, Strekowski, Rafal, Barbati, Stephane, Vione, Davide. Environmental Implications of Hydroxyl Radicals (OH). Chemical reviews, vol.115, no.24, 13051-13092.

  15. Chong, Meng Nan, Jin, Bo, Chow, Christopher W.K., Saint, Chris. Recent developments in photocatalytic water treatment technology: A review. Water research, vol.44, no.10, 2997-3027.

  16. Zhang, Jie, Nosaka, Yoshio. Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.20, 10824-10832.

  17. Li, Qian, Zhang, Ning, Yang, Yong, Wang, Guozhong, Ng, Dickon H. L.. High Efficiency Photocatalysis for Pollutant Degradation with MoS2/C3N4 Heterostructures. Langmuir : the ACS journal of surfaces and colloids, vol.30, no.29, 8965-8972.

  18. Nosaka, Yoshio, Nosaka, Atsuko. Understanding Hydroxyl Radical (OH) Generation Processes in Photocatalysis. ACS energy letters, vol.1, no.2, 356-359.

  19. Gaya, U.I., Abdullah, A.H.. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of photochemistry and photobiology. C, Photochemistry reviews, vol.9, no.1, 1-12.

  20. Maurino, Valter, Minero, Claudio, Mariella, Giuseppe, Pelizzetti, Ezio. Sustained production of H2O2 on irradiated TiO2 – fluoride systems. Chemical communications : Chem comm, vol.2005, no.20, 2627-2629.

  21. Sheng, Jiayi, Li, Xiaojin, Xu, Yiming. Generation of H2O2 and OH Radicals on Bi2WO6 for Phenol Degradation under Visible Light. ACS catalysis, vol.4, no.3, 732-737.

  22. Tsukamoto, Daijiro, Shiro, Akimitsu, Shiraishi, Yasuhiro, Sugano, Yoshitsune, Ichikawa, Satoshi, Tanaka, Shunsuke, Hirai, Takayuki. Photocatalytic H2O2 Production from Ethanol/O2 System UsingTiO2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS catalysis, vol.2, no.4, 599-603.

  23. Sun, B., Vorontsov, A. V., Smirniotis, P. G.. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation. Langmuir : the ACS journal of surfaces and colloids, vol.19, no.8, 3151-3156.

  24. Bae, S., Kim, S., Lee, S., Choi, W.. Dye decolorization test for the activity assessment of visible light photocatalysts: Realities and limitations. Catalysis today, vol.224, 21-28.

  25. Li, Zhen, Cong, Shan, Xu, Yiming. Brookite vs Anatase TiO2 in the Photocatalytic Activity for Organic Degradation in Water. ACS catalysis, vol.4, no.9, 3273-3280.

  26. Kim, G., Lee, S.H., Choi, W.. Glucose-TiO2 charge transfer complex-mediated photocatalysis under visible light. Applied catalysis. B, Environmental, vol.162, 463-469.

  27. Sun, B., Reddy, E. P., Smirniotis, P. G.. Visible Light Cr(VI) Reduction and Organic Chemical Oxidation by TiO2 Photocatalysis. Environmental science & technology, vol.39, no.16, 6251-6259.

  28. Choi, Wonyong, Yeo, Jiman, Ryu, Jungho, Tachikawa, Takashi, Majima, Tetsuro. Photocatalytic Oxidation Mechanism of As(III) on TiO2: Unique Role of As(III) as a Charge Recombinant Species. Environmental science & technology, vol.44, no.23, 9099-9104.

  29. Noguchi, H., Nakajima, A., Watanabe, T., Hashimoto, K.. Design of a Photocatalyst for Bromate Decomposition: Surface Modification of TiO2 by Pseudo-boehmite. Environmental science & technology, vol.37, no.1, 153-157.

  30. Zhao, X., Liu, H., Shen, Y., Qu, J.. Photocatalytic reduction of bromate at C60 modified Bi2MoO6 under visible light irradiation. Applied catalysis. B, Environmental, vol.106, no.1, 63-68.

  31. Zhang, Fuxiang, Jin, Ruicai, Chen, Jixin, Shao, Changzhun, Gao, Wenliang, Li, Landong, Guan, Naijia. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of catalysis, vol.232, no.2, 424-431.

  32. Hirayama, Jun, Kamiya, Yuichi. Combining the Photocatalyst Pt/TiO2 and the Nonphotocatalyst SnPd/Al2O3 for Effective Photocatalytic Purification of Groundwater Polluted with Nitrate. ACS catalysis, vol.4, no.7, 2207-2215.

  33. Hirakawa, Hiroaki, Hashimoto, Masaki, Shiraishi, Yasuhiro, Hirai, Takayuki. Selective Nitrate-to-Ammonia Transformation on Surface Defects of Titanium Dioxide Photocatalysts. ACS catalysis, vol.7, no.5, 3713-3720.

  34. Wang, D., Li, Y., Li Puma, G., Lianos, P., Wang, C., Wang, P.. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater. Journal of hazardous materials, vol.323, no.2, 681-689.

  35. Watts, Richard J., Kong, Sungho, Orr, Margaret P., Miller, Glenn C., Henry, Berch E.. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water research, vol.29, no.1, 95-100.

  36. Ren, Shaojie, Boo, Chanhee, Guo, Ning, Wang, Shuguang, Elimelech, Menachem, Wang, Yunkun. Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Environmental science & technology, vol.52, no.15, 8666-8673.

  37. Akhavan, O., Ghaderi, E.. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.47, 20214-20220.

  38. Tran, Phong D., Wong, Lydia H., Barber, James, Loo, Joachim S. C.. Recent advances in hybrid photocatalysts for solar fuel production. Energy & environmental science, vol.5, no.3, 5902-5918.

  39. FUJISHIMA, AKIRA, HONDA, KENICHI. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, vol.238, no.5358, 37-38.

  40. Fujishima, Akira, Kohayakawa, Koichi, Honda, Kenichi. Hydrogen Production under Sunlight with an Electrochemical Photocell. Journal of the Electrochemical Society : JES, vol.122, no.11, 1487-1489.

  41. Li, Zhaosheng, Luo, Wenjun, Zhang, Minglong, Feng, Jianyong, Zou, Zhigang. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & environmental science, vol.6, no.2, 347-370.

  42. Jing, Dengwei, Guo, Liejin, Zhao, Liang, Zhang, Ximin, Liu, Huan, Li, Mingtao, Shen, Shaohua, Liu, Guanjie, Hu, Xiaowei, Zhang, Xianghui, Zhang, Kai, Ma, Lijin, Guo, Penghui. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. International journal of hydrogen energy, vol.35, no.13, 7087-7097.

  43. Moon, Gun-hee, Fujitsuka, Mamoru, Kim, Sooyeon, Majima, Tetsuro, Wang, Xinchen, Choi, Wonyong. Eco-Friendly Photochemical Production of H2O2 through O2 Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. ACS catalysis, vol.7, no.4, 2886-2895.

  44. Li, S., Dong, G., Hailili, R., Yang, L., Li, Y., Wang, F., Zeng, Y., Wang, C.. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Applied catalysis. B, Environmental, vol.190, 26-35.

  45. Kang, Unseock, Choi, Sung Kyu, Ham, Dong Jin, Ji, Sang Min, Choi, Wonyong, Han, Dong Suk, Abdel-Wahab, Ahmed, Park, Hyunwoong. Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy & environmental science, vol.8, no.9, 2638-2643.

  46. Litter, Marta I.. Heterogeneous photocatalysis : Transition metal ions in photocatalytic systems. Applied catalysis. B, Environmental, vol.23, no.2, 89-114.

  47. Braham, Rowan J., Harris, Andrew T.. Review of Major Design and Scale-up Considerations for Solar Photocatalytic Reactors. Industrial & engineering chemistry research, vol.48, no.19, 8890-8905.

  48. Park, Hyunwoong, Vecitis, Chad D., Hoffmann, Michael R.. Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, vol.112, no.33, 7616-7626.

  49. Winkler, Mark T., Cox, Casandra R., Nocera, Daniel G., Buonassisi, Tonio. Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.12, E1076-E1082.

  50. Chang, Woo Je, Lee, Kyung-Hwan, Ha, Heonjin, Jin, Kyoungsuk, Kim, Gunho, Hwang, Sun-Tae, Lee, Heon-min, Ahn, Seh-Won, Yoon, Wonki, Seo, Hongmin, Hong, Jung Sug, Go, Yoo Kyung, Ha, Jung-Ik, Nam, Ki Tae. Design Principle and Loss Engineering for Photovoltaic-Electrolysis Cell System. ACS omega, vol.2, no.3, 1009-1018.

  51. Jia, Jieyang, Seitz, Linsey C., Benck, Jesse D., Huo, Yijie, Chen, Yusi, Ng, Jia Wei Desmond, Bilir, Taner, Harris, James S., Jaramillo, Thomas F.. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nature communications, vol.7, 13237-.

  52. Grätzel, Michael. Photoelectrochemical cells. Nature, vol.414, no.6861, 338-344.

  53. Yang, Yi, Niu, Shuwen, Han, Dongdong, Liu, Tianyu, Wang, Gongming, Li, Yat. Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting. Advanced energy materials, vol.7, no.19, 1700555-.

  54. Koo, Min Seok, Cho, Kangwoo, Yoon, Jeyong, Choi, Wonyong. Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environmental science & technology, vol.51, no.11, 6590-6598.

  55. Zhang, Huanjun, Chen, Guohua, Bahnemann, Detlef W.. Photoelectrocatalytic materials for environmental applications. Journal of materials chemistry, vol.19, no.29, 5089-5121.

  56. Kim, Jungwon, Choi, Wonyong. Hydrogen producing water treatment through solar photocatalysis. Energy & environmental science, vol.3, no.8, 1042-1045.

  57. Cho, Y.J., Kim, H.i., Lee, S., Choi, W.. Dual-functional photocatalysis using a ternary hybrid of TiO2 modified with graphene oxide along with Pt and fluoride for H2-producing water treatment. Journal of catalysis, vol.330, 387-395.

  58. Khan, Maksudur R, Chuan, Tan Wooi, Yousuf, Abu, Chowdhury, M. N. K., Cheng, Chin Kui. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catalysis science & technology, vol.5, no.5, 2522-2531.

  59. Yang, Y.Z., Chang, C.-H., Idriss, H.. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Applied catalysis. B, Environmental, vol.67, no.3, 217-222.

  60. Belhadj, Hamza, Hamid, Saher, Robertson, Peter K. J., Bahnemann, Detlef W.. Mechanisms of Simultaneous Hydrogen Production and Formaldehyde Oxidation in H2O and D2O over Platinized TiO2. ACS catalysis, vol.7, no.7, 4753-4758.

  61. Park, H., Choi, W.. Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.108, no.13, 4086-4093.

  62. Minero, C., Mariella, G., Maurino, V., Pelizzetti, E.. Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide−Fluoride System. Langmuir : the ACS journal of surfaces and colloids, vol.16, no.6, 2632-2641.

  63. Kim, Jungwon, Monllor-Satoca, Damián, Choi, Wonyong. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy & environmental science, vol.5, no.6, 7647-7656.

  64. Korzhak, A. V., Kuchmii, S. Ya., Kryukov, A. I.. Effects of activation and inhibition by oxygen of the photocatalytic evolution of hydrogen from alcohol-water media. Theoretical and experimental chemistry, vol.30, no.1, 26-29.

  65. Schmelling, Daniel C., Gray, Kimberly A.. Photocatalytic transformation and mineralization of 2,4,6-trinitrotoluene (TNT) in TiO2 slurries. Water research, vol.29, no.12, 2651-2662.

  66. Cho, Young-Jin, Moon, Gun-hee, Kanazawa, Tomoki, Maeda, Kazuhiko, Choi, Wonyong. Selective dual-purpose photocatalysis for simultaneous H2 evolution and mineralization of organic compounds enabled by a Cr2O3 barrier layer coated on Rh/SrTiO3. Chemical communications : Chem comm, vol.52, no.62, 9636-9639.

  67. Maeda, Kazuhiko, Teramura, Kentaro, Lu, Daling, Saito, Nobuo, Inoue, Yasunobu, Domen, Kazunari. Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angewandte Chemie, vol.118, no.46, 7970-7973.

  68. Kim, Seonghun, Piao, Guangxia, Han, Dong Suk, Shon, Ho Kyong, Park, Hyunwoong. Solar desalination coupled with water remediation and molecular hydrogen production: a novel solar water-energy nexus. Energy & environmental science, vol.11, no.2, 344-353.

  69. Cho, Kangwoo, Qu, Yan, Kwon, Daejung, Zhang, Hao, Cid, Clément A., Aryanfar, Asghar, Hoffmann, Michael R.. Effects of Anodic Potential and Chloride Ion on Overall Reactivity in Electrochemical Reactors Designed for Solar-Powered Wastewater Treatment. Environmental science & technology, vol.48, no.4, 2377-2384.

  70. Huang, Xiao, Qu, Yan, Cid, Clément A., Finke, Cody, Hoffmann, Michael R., Lim, Keahying, Jiang, Sunny C.. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water research, vol.92, 164-172.

  71. Dunlop, P.S.M., Byrne, J.A., Manga, N., Eggins, B.R.. The photocatalytic removal of bacterial pollutants from drinking water. Journal of photochemistry and photobiology. A, Chemistry, vol.148, no.1, 355-363.

  72. Panizza, M., Cerisola, G.. Electrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater. Environmental science & technology, vol.38, no.20, 5470-5475.

  73. Lacasa, E., Tsolaki, E., Sbokou, Z., Rodrigo, M.A., Mantzavinos, D., Diamadopoulos, E.. Electrochemical disinfection of simulated ballast water on conductive diamond electrodes. Chemical engineering journal, vol.223, 516-523.

  74. Cid, Clément A., Qu, Yan, Hoffmann, Michael R.. Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the developing world. Environmental science : water research & technology, vol.4, no.10, 1439-1450.

  75. Campos-Martin, Jose M., Blanco-Brieva, Gema, Fierro, Jose L. G.. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angewandte Chemie. international edition, vol.45, no.42, 6962-6984.

  76. Fukuzumi, Shunichi. Production of Liquid Solar Fuels and Their Use in Fuel Cells. Joule, vol.1, no.4, 689-738.

  77. Moon, Gun-hee, Fujitsuka, Mamoru, Kim, Sooyeon, Majima, Tetsuro, Wang, Xinchen, Choi, Wonyong. Eco-Friendly Photochemical Production of H2O2 through O2 Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. ACS catalysis, vol.7, no.4, 2886-2895.

  78. Kim, Hyoung-il, Choi, Yeoseon, Hu, Shu, Choi, Wonyong, Kim, Jae-Hong. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Applied catalysis. B, Environmental, vol.229, 121-129.

  79. Kofuji, Yusuke, Isobe, Yuki, Shiraishi, Yasuhiro, Sakamoto, Hirokatsu, Tanaka, Shunsuke, Ichikawa, Satoshi, Hirai, Takayuki. Carbon Nitride–Aromatic Diimide–Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Journal of the American Chemical Society, vol.138, no.31, 10019-10025.

  80. Bokare, A.D., Choi, W.. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of hazardous materials, vol.275, 121-135.

  81. Moon, Gun-hee, Kim, Sujeong, Cho, Young-Jin, Lim, Jonghun, Kim, Dong-hyo, Choi, Wonyong. Synergistic combination of bandgap-modified carbon nitride and WO3 for visible light-induced oxidation of arsenite accelerated by in-situ Fenton reaction. Applied catalysis. B, Environmental, vol.218, 819-824.

  82. Kim, Sujeong, Moon, Gun-hee, Kim, Hyejin, Mun, Yeongdong, Zhang, Peng, Lee, Jinwoo, Choi, Wonyong. Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. Journal of catalysis, vol.357, 51-58.

  83. Zong, Xu, Chen, Hongjun, Seger, Brian, Pedersen, Thomas, Dargusch, Matthew S., McFarland, Eric W., Li, Can, Wang, Lianzhou. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell. Energy & environmental science, vol.7, no.10, 3347-3351.

  84. Fuku, Kojiro, Miyase, Yuta, Miseki, Yugo, Funaki, Takashi, Gunji, Takahiro, Sayama, Kazuhiro. Photoelectrochemical Hydrogen Peroxide Production from Water on a WO3/BiVO4 Photoanode and from O2 on an Au Cathode Without External Bias. Chemistry, an Asian journal, vol.12, no.10, 1111-1119.

  85. Fuku, Kojiro, Miyase, Yuta, Miseki, Yugo, Gunji, Takahiro, Sayama, Kazuhiro. Enhanced Oxidative Hydrogen Peroxide Production on Conducting Glass Anodes Modified with Metal Oxides. ChemistrySelect, vol.1, no.18, 5721-5726.

  86. Fuku, Kojiro, Sayama, Kazuhiro. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chemical communications : Chem comm, vol.52, no.31, 5406-5409.

  87. Mase, Kentaro, Yoneda, Masaki, Yamada, Yusuke, Fukuzumi, Shunichi. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nature communications, vol.7, 11470-.

  88. Shi, Xinjian, Zhang, Yirui, Siahrostami, Samira, Zheng, Xiaolin. Light‐Driven BiVO4-C Fuel Cell with Simultaneous Production of H2O2. Advanced energy materials, vol.8, no.23, 1801158-.

  89. Chai, Guo-Liang, Boero, Mauro, Hou, Zhufeng, Terakura, Kiyoyuki, Cheng, Wendan. Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions. ACS catalysis, vol.7, no.11, 7908-7916.

  90. Fountaine, Katherine T., Lewerenz, Hans Joachim, Atwater, Harry A.. Efficiency limits for photoelectrochemical water-splitting. Nature communications, vol.7, 13706-.

  91. Barakat, M.A, Chen, Y.T, Huang, C.P. Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst. Applied catalysis. B, Environmental, vol.53, no.1, 13-20.

  92. Lee, Siew Siang, Bai, Hongwei, Liu, Zhaoyang, Sun, Darren Delai. Green Approach for Photocatalytic Cu(II)-EDTA Degradation over TiO2: Toward Environmental Sustainability. Environmental science & technology, vol.49, no.4, 2541-2548.

  93. Zhao, Xu, Guo, Libao, Zhang, Baofeng, Liu, Huijuan, Qu, Jiuhui. Photoelectrocatalytic Oxidation of CuII–EDTA at the TiO2 Electrode and Simultaneous Recovery of CuII by Electrodeposition. Environmental science & technology, vol.47, no.9, 4480-4488.

  94. Rhoads, Kurt R., Davis, Allen P.. Metal Recovery and Catalyst Reuse from the Photocatalytic Oxidation of Copper-Ethylenediaminetetraacetic Acid. Journal of environmental engineering, vol.130, no.4, 425-431.

  95. Zeng, Huabin, Liu, Shanshan, Chai, Buyu, Cao, Di, Wang, Yan, Zhao, Xu. Enhanced Photoelectrocatalytic Decomplexation of Cu–EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction. Environmental science & technology, vol.50, no.12, 6459-6466.

  96. Zhao, Xu, Zhang, Juanjuan, Qiao, Meng, Liu, Huijuan, Qu, Jiuhui. Enhanced Photoelectrocatalytic Decomposition of Copper Cyanide Complexes and Simultaneous Recovery of Copper with a Bi2MoO6 Electrode under Visible Light by EDTA/K4P2O7. Environmental science & technology, vol.49, no.7, 4567-4574.

  97. Shaner, Matthew R., Atwater, Harry A., Lewis, Nathan S., McFarland, Eric W.. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & environmental science, vol.9, no.7, 2354-2371.

  98. Pinaud, Blaise A., Benck, Jesse D., Seitz, Linsey C., Forman, Arnold J., Chen, Zhebo, Deutsch, Todd G., James, Brian D., Baum, Kevin N., Baum, George N., Ardo, Shane, Wang, Heli, Miller, Eric, Jaramillo, Thomas F.. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy & environmental science, vol.6, no.7, 1983-2002.

  99. Choi, Yeoseon, Koo, Min Seok, Bokare, Alok D., Kim, Dong-hyo, Bahnemann, Detlef W., Choi, Wonyong. Sequential Process Combination of Photocatalytic Oxidation and Dark Reduction for the Removal of Organic Pollutants and Cr(VI) using Ag/TiO2. Environmental science & technology, vol.51, no.7, 3973-3981.

  100. Wood, A., Giersig, M., Mulvaney, P.. Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.105, no.37, 8810-8815.

  101. Wang, Zhaohui, Bush, Richard T., Sullivan, Leigh A., Liu, Jianshe. Simultaneous Redox Conversion of Chromium(VI) and Arsenic(III) under Acidic Conditions. Environmental science & technology, vol.47, no.12, 6486-6492.

  102. Sun, Meng, Zhang, Gong, Qin, Yinghua, Cao, Meijuan, Liu, Yang, Li, Jinghong, Qu, Jiuhui, Liu, Huijuan. Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution. Environmental science & technology, vol.49, no.15, 9289-9297.

  103. Ruiping, L., Lihua, S., Jiuhui, Q., Guibai, L.. Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination, vol.249, no.3, 1233-1237.

  104. Duca, Matteo, Koper, Marc T. M.. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy & environmental science, vol.5, no.12, 9726-9742.

  105. Sa, J., Aguera, C.A., Gross, S., Anderson, J.A.. Photocatalytic nitrate reduction over metal modified TiO2. Applied catalysis. B, Environmental, vol.85, no.3, 192-200.

  106. Soares, O.S.G.P., Pereira, M.F.R., Orfao, J.J.M., Faria, J.L., Silva, C.G.. Photocatalytic nitrate reduction over Pd-Cu/TiO2. Chemical engineering journal, vol.251, 123-130.

  107. Kominami, H., Furusho, A., Murakami, S.-y., Inoue, H., Kera, Y., Ohtani, B.. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid. Catalysis letters, vol.76, no.1, 31-34.

  108. Li, L., Xu, Z., Liu, F., Shao, Y., Wang, J., Wan, H., Zheng, S.. Photocatalytic nitrate reduction over PtCu/TiO2 catalysts with benzene as hole scavenger. Journal of photochemistry and photobiology. A, Chemistry, vol.212, no.2, 113-121.

  109. Gao, Wenliang, Jin, Ruicai, Chen, Jixin, Guan, Xinxin, Zeng, Haisheng, Zhang, Fuxiang, Guan, Naijia. Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate. Catalysis today, vol.90, no.3, 331-336.

  110. Kobwittaya, K., Sirivithayapakorn, S.. Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. Journal of Saudi Chemical Society, vol.18, no.4, 291-298.

  111. Zhang, Fuxiang, Jin, Ruicai, Chen, Jixin, Shao, Changzhun, Gao, Wenliang, Li, Landong, Guan, Naijia. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of catalysis, vol.232, no.2, 424-431.

  112. Reyter, D., Belanger, D., Roue, L.. Optimization of the cathode material for nitrate removal by a paired electrolysis process. Journal of hazardous materials, vol.192, no.2, 507-513.

  113. Li, Miao, Feng, Chuanping, Zhang, Zhenya, Lei, Xiaohui, Chen, Rongzhi, Yang, Yinan, Sugiura, Norio. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method. Journal of hazardous materials, vol.171, no.1, 724-730.

  114. Ji, Youzhi, Bai, Jing, Li, Jinhua, Luo, Tao, Qiao, Li, Zeng, Qingyi, Zhou, Baoxue. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water research, vol.125, 512-519.

  115. Zhang, Yan, Li, Jinhua, Bai, Jing, Shen, Zhaoxi, Li, Linsen, Xia, Ligang, Chen, Shuai, Zhou, Baoxue. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode. Environmental science & technology, vol.52, no.3, 1413-1420.

  116. Han, Lei, Guo, Shaojun, Xu, Miao, Dong, Shaojun. Photoelectrochemical batteries for efficient energy recovery. Chemical communications : Chem comm, vol.50, no.87, 13331-13333.

  117. Wang, K., Yang, J., Feng, L., Zhang, Y., Liang, L., Xing, W., Liu, C.. Photoelectrochemical biofuel cell using porphyrin-sensitized nanocrystalline titanium dioxide mesoporous film as photoanode. Biosensors & bioelectronics, vol.32, no.1, 177-182.

  118. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K.. Microbial Fuel Cells: Methodology and Technology. Environmental science & technology, vol.40, no.17, 5181-5192.

  119. Du, Yue, Feng, Yujie, Qu, Youpeng, Liu, Jia, Ren, Nanqi, Liu, Hong. Electricity Generation and Pollutant Degradation Using a Novel Biocathode Coupled Photoelectrochemical Cell. Environmental science & technology, vol.48, no.13, 7634-7641.

  120. Hambourger, Michael, Kodis, Gerdenis, Vaughn, Michael D., Moore, Gary F., Gust, Devens, Moore, Ana L., Moore, Thomas A.. Solar energy conversion in a photoelectrochemical biofuel cell. Dalton transactions : an international journal of inorganic chemistry, vol.2009, no.45, 9979-9989.

  121. Wang, Hanyu, Qian, Fang, Wang, Gongming, Jiao, Yongqin, He, Zhen, Li, Yat. Self-Biased Solar-Microbial Device for Sustainable Hydrogen Generation. ACS nano, vol.7, no.10, 8728-8735.

  122. Chen, Quanpeng, Li, Jinhua, Li, Xuejin, Huang, Ke, Zhou, Baoxue, Cai, Weimin, Shangguan, Wenfeng. Visible-Light Responsive Photocatalytic Fuel Cell Based on WO3/W Photoanode and Cu2O/Cu Photocathode for Simultaneous Wastewater Treatment and Electricity Generation. Environmental science & technology, vol.46, no.20, 11451-11458.

  123. Zhou, Zhaoyu, Wu, Zhongyi, Xu, Qunjie, Zhao, Guohua. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.48, 25450-25459.

  124. Kim, Jungwon, Lee, Jaesang, Choi, Wonyong. Synergic effect of simultaneous fluorination and platinization of TiO2 surface on anoxic photocatalytic degradation of organic compounds. Chemical communications : Chem comm, vol.2008, no.6, 756-758.

  125. Zhang, H., Ma, C., Li, Y., Chen, Y., Lu, C., Wang, J.. Sol-gel-hydrothermal synthesis of Er3+:Y3Al5O12/Pt-TiO2 membrane and visible-light driving photocatalytic hydrogen evolution from pollutants. Applied catalysis. A, General, vol.503, 209-217.

  126. Daskalaki, Vasileia M., Antoniadou, Maria, Li Puma, Gianluca, Kondarides, Dimitris I., Lianos, Panagiotis. Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater. Environmental science & technology, vol.44, no.19, 7200-7205.

  127. Belhadj, Hamza, Hamid, Saher, Robertson, Peter K. J., Bahnemann, Detlef W.. Mechanisms of Simultaneous Hydrogen Production and Formaldehyde Oxidation in H2O and D2O over Platinized TiO2. ACS catalysis, vol.7, no.7, 4753-4758.

  128. Patsoura, A., Kondarides, D.I., Verykios, X.E.. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis today, vol.124, no.3, 94-102.

  129. Xu, Yingfeng, Zhang, Chen, Lu, Ping, Zhang, Xiaohua, Zhang, Lingxia, Shi, Jianlin. Overcoming poisoning effects of heavy metal ions against photocatalysis for synergetic photo-hydrogen generation from wastewater. Nano energy, vol.38, 494-503.

  130. Zhang, W., Li, Y., Wang, C., Wang, P., Wang, Q., Wang, D.. Mechanisms of simultaneous hydrogen production and estrogenic activity removal from secondary effluent though solar photocatalysis. Water research, vol.47, no.9, 3173-3182.

  131. Rong, Yang, Tang, Liang, Song, Yahui, Wei, Shengnan, Zhang, Zhaohong, Wang, Jun. A new visible-light driving nanocomposite photocatalyst Er3+:Y3Al5O12/MoS2-NaTaO3-PdS for photocatalytic degradation of a refractory pollutant with potentially simultaneous hydrogen evolution. RSC advances, vol.6, no.84, 80595-80603.

  132. Lin, Zhaoyong, Li, Lihua, Yu, Lili, Li, Weijia, Yang, Guowei. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters. Physical chemistry chemical physics : PCCP, vol.19, no.12, 8356-8362.

  133. Chu, Ka Him, Ye, Liqun, Wang, Wei, Wu, Dan, Chan, Donald Ka Long, Zeng, Cuiping, Yip, Ho Yin, Yu, Jimmy C., Wong, Po Keung. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4 with simultaneous dye degradation under visible-light irradiation. Chemosphere, vol.183, 219-228.

  134. Kim, Jungwon, Park, Yiseul, Park, Hyunwoong. Solar Hydrogen Production Coupled with the Degradation of a Dye Pollutant Using TiO2Modified with Platinum and Nafion. International journal of photoenergy, vol.2014, 1-9.

  135. Wang, J., Zhang, P., Li, X., Zhu, J., Li, H.. Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Applied catalysis. B, Environmental, vol.134, 198-204.

  136. Patsoura, Alexia, Kondarides, Dimitris I., Verykios, Xenophon E.. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Applied catalysis. B, Environmental, vol.64, no.3, 171-179.

  137. Zhang, Shuqu, Wang, Longlu, Liu, Chengbin, Luo, Jinming, Crittenden, John, Liu, Xia, Cai, Tao, Yuan, Jili, Pei, Yong, Liu, Yutang. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. Water research, vol.121, 11-19.

  138. Iervolino, G., Vaiano, V., Sannino, D, Rizzo, L., Palma, V.. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Applied catalysis. B, Environmental, vol.207, 182-194.

  139. Iervolino, G., Vaiano, V., Murcia, J.J., Rizzo, L., Ventre, G., Pepe, G., Campiglia, P., Hidalgo, M.C., Navio, J.A., Sannino, D.. Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. Journal of catalysis, vol.339, 47-56.

  140. Silva, C.G., Sampaio, M.J., Marques, R.R.N., Ferreira, L.A., Tavares, P.B., Silva, A.M.T., Faria, J.L.. Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Applied catalysis. B, Environmental, vol.178, 82-90.

  141. Carraro, Giorgio, Maccato, Chiara, Gasparotto, Alberto, Montini, Tiziano, Turner, Stuart, Lebedev, Oleg I., Gombac, Valentina, Adami, Gianpiero, Van Tendeloo, Gustaaf, Barreca, Davide, Fornasiero, Paolo. Enhanced Hydrogen Production by Photoreforming of Renewable Oxygenates Through Nanostructured Fe2O3 Polymorphs. Advanced functional materials, vol.24, no.3, 372-378.

  142. Daskalaki, V.M., Kondarides, D.I.. Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catalysis today, vol.144, no.1, 75-80.

  143. Kondarides, Dimitris I., Daskalaki, Vasileia M., Patsoura, Alexia, Verykios, Xenophon E.. Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions. Catalysis letters, vol.122, no.1, 26-32.

  144. Bhirud, Ashwini P., Sathaye, Shivaram D., Waichal, Rupali P., Nikam, Latesh K., Kale, Bharat B.. An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green chemistry : an international journal and green chemistry resource : GC, vol.14, no.10, 2790-2798.

  145. Bhirud, Ashwini P., Sathaye, Shivaram D., Waichal, Rupali P., Ambekar, Jalindar D., Park, Chan-J., Kale, Bharat B.. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light. Nanoscale, vol.7, no.11, 5023-5034.

  146. Jang, Jum Suk, Li, Wei, Oh, Se Hyuk, Lee, Jae Sung. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chemical physics letters, vol.425, no.4, 278-282.

  147. Apte, Sanjay K., Garaje, Sunil N., Valant, Matjaz, Kale, Bharat B.. Eco-friendly solar light driven hydrogen production from copious waste H2S and organic dye degradation by stable and efficient orthorhombic CdS quantum dots–GeO2 glass photocatalyst. Green chemistry : an international journal and green chemistry resource : GC, vol.14, no.5, 1455-1462.

  148. Garaje, Sunil N., Apte, Sanjay K., Naik, Sonali D., Ambekar, Jalindar D., Sonawane, Ravindra S., Kulkarni, Milind V., Vinu, Ajayan, Kale, Bharat B.. Template-Free Synthesis of Nanostructured CdxZn1–xS with Tunable Band Structure for H2 Production and Organic Dye Degradation Using Solar Light. Environmental science & technology, vol.47, no.12, 6664-6672.

  149. Chen, Dingwang, K. Ray, Ajay. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical engineering science, vol.56, no.4, 1561-1570.

  150. Kominami, Hiroshi, Kitsui, Ken, Ishiyama, Yuki, Hashimoto, Keiji. Simultaneous removal of nitrite and ammonia as dinitrogen in aqueous suspensions of a titanium(IV) oxide photocatalyst under reagent-free and metal-free conditions at room temperature. RSC advances, vol.4, no.93, 51576-51579.

  151. Lucchetti, Roberta, Onotri, Luca, Clarizia, Laura, Natale, Francesco Di, Somma, Ilaria Di, Andreozzi, Roberto, Marotta, Raffaele. Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over “in situ” prepared zero-valent nano copper/P25. Applied catalysis. B, Environmental, vol.202, 539-549.

  152. Herissan, A., Meichtry, J.M., Remita, H., Colbeau-Justin, C., Litter, M.I.. Reduction of nitrate by heterogeneous photocatalysis over pure and radiolytically modified TiO2 samples in the presence of formic acid. Catalysis today, vol.281, no.1, 101-108.

  153. Wang, Xiu, Hong, Mingzhu, Zhang, Fuwei, Zhuang, Zanyong, Yu, Yan. Recyclable Nanoscale Zero Valent Iron Doped g-C3N4/MoS2 for Efficient Photocatalysis of RhB and Cr(VI) Driven by Visible Light. ACS sustainable chemistry et engineering, vol.4, no.7, 4055-4063.

  154. Zou, Jian-Ping, Wu, Dan-Dan, Bao, Shao-Kui, Luo, Jinming, Luo, Xu-Biao, Lei, Si-Liang, Liu, Hui-Long, Du, Hong-Mei, Luo, Sheng-Lian, Au, Chak-Tong, Suib, Steven L.. Hydrogen Evolution from Water Coupled with the Oxidation of As(III) in a Photocatalytic System. ACS applied materials & interfaces, vol.7, no.51, 28429-28437.

  155. Kim, Jaesung, Kim, Jungwon. Arsenite Oxidation-Enhanced Photocatalytic Degradation of Phenolic Pollutants on Platinized TiO2. Environmental science & technology, vol.48, no.22, 13384-13391.

  156. Park, H., Bak, A., Ahn, Y.Y., Choi, J., Hoffmannn, M.R.. Photoelectrochemical performance of multi-layered BiOx-TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. Journal of hazardous materials, vol.211, 47-54.

  157. Peng, Yen-Ping, Chen, Hanlin, Huang, C.P.. The Synergistic Effect of Photoelectrochemical (PEC) Reactions Exemplified by Concurrent Perfluorooctanoic acid (PFOA) Degradation and Hydrogen Generation over Carbon and Nitrogen codoped TiO2 Nanotube Arrays (C-N-TNTAs) photoelectrode. Applied catalysis. B, Environmental, vol.209, 437-446.

  158. Wu, Zhongyi, Zhou, Zhaoyu, Zhang, Yajun, Wang, Jie, Shi, Huijie, Shen, Qi, Wei, Guangfeng, Zhao, Guohua. Simultaneous photoelectrocatalytic aromatic organic pollutants oxidation for hydrogen production promotion with a self-biasing photoelectrochemical cell. Electrochimica acta, vol.254, 140-147.

  159. Pop, L.C., Tantis, I., Lianos, P.. Photoelectrocatalytic hydrogen production using nitrogen containing water soluble wastes. International journal of hydrogen energy, vol.40, no.26, 8304-8310.

  160. Wang, Dawei, Li, Yi, Li Puma, Gianluca, Wang, Chao, Wang, Peifang, Zhang, Wenlong, Wang, Qing. Dye-sensitized photoelectrochemical cell on plasmonic Ag/AgCl @ chiral TiO2 nanofibers for treatment of urban wastewater effluents, with simultaneous production of hydrogen and electricity. Applied catalysis. B, Environmental, vol.168, 25-32.

  161. Chang, Ken-Lin, Sun, Qiannan, Peng, Yen-Ping, Lai, Shiau-Wu, Sung, Menghau, Huang, Chi-Yu, Kuo, Hsion-Wen, Sun, Jian, Lin, Yi-Ching. Cu2O loaded titanate nanotube arrays for simultaneously photoelectrochemical ibuprofen oxidation and hydrogen generation. Chemosphere, vol.150, 605-614.

  162. Leng, W.H., Zhu, W.C., Ni, J., Zhang, Z., Zhang, J.Q., Cao, C.N.. Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode. Applied catalysis. A, General, vol.300, no.1, 24-35.

  163. Gong, J., Pu, W., Yang, C., Zhang, J.. Novel one-step preparation of tungsten loaded TiO2 nanotube arrays with enhanced photoelectrocatalytic activity for pollutant degradation and hydrogen production. Catalysis communications, vol.36, 89-93.

  164. Guaraldo, T.T., Goncales, V.R., Silva, B.F., de Torresi, S.I.C., Zanoni, M.V.B.. Hydrogen production and simultaneous photoelectrocatalytic pollutant oxidation using a TiO2/WO3 nanostructured photoanode under visible light irradiation. Journal of electroanalytical chemistry, vol.765, 188-196.

  165. Wang, W., Li, F., Zhang, D., Leung, D.Y.C., Li, G.. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Applied surface science, vol.362, 490-497.

  166. Wu, H., Zhang, Z.. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. Journal of solid state chemistry, vol.184, no.12, 3202-3207.

  167. Raptis, Dimitrios, Dracopoulos, Vassilios, Lianos, Panagiotis. Renewable energy production by photoelectrochemical oxidation of organic wastes using WO3 photoanodes. Journal of hazardous materials, vol.333, 259-264.

  168. Wang, Gongming, Ling, Yichuan, Lu, Xihong, Zhai, Teng, Qian, Fang, Tong, Yexiang, Li, Yat. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale, vol.5, no.10, 4129-.

  169. Iervolino, Giuseppina, Tantis, Iosif, Sygellou, Lamprini, Vaiano, Vincenzo, Sannino, Diana, Lianos, Panagiotis. Photocurrent increase by metal modification of Fe2O3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances. Applied surface science, vol.400, 176-183.

  170. Luo, Tao, Bai, Jing, Li, Jinhua, Zeng, Qingyi, Ji, Youzhi, Qiao, Li, Li, Xiaoyan, Zhou, Baoxue. Self-Driven Photoelectrochemical Splitting of H2S for S and H2 Recovery and Simultaneous Electricity Generation. Environmental science & technology, vol.51, no.21, 12965-12971.

  171. Zong, Xu, Han, Jingfeng, Seger, Brian, Chen, Hongjun, Lu, Gaoqing (Max), Li, Can, Wang, Lianzhou. An Integrated Photoelectrochemical–Chemical Loop for Solar‐Driven Overall Splitting of Hydrogen Sulfide. Angewandte Chemie. international edition, vol.53, no.17, 4399-4403.

  172. 10.1002/(SICI)1097-4660(200005)75:5<353::AID-JCTB221>3.0.CO;2-Y 

  173. Liu, L., Li, R., Liu, Y., Zhang, J.. Simultaneous degradation of ofloxacin and recovery of Cu(II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. Journal of hazardous materials, vol.308, 264-275.

  174. Qi, Fanjing, Yang, Bo, Wang, Yanbin, Mao, Ran, Zhao, Xu. H2O2 Assisted Photoelectrocatalytic Oxidation of Ag-Cyanide Complexes at Metal-free g-C3N4 Photoanode with Simultaneous Ag Recovery. ACS sustainable chemistry et engineering, vol.5, no.6, 5001-5007.

  175. Paschoal, F.M.M., Anderson, M.A., Zanoni, M.V.B.. Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. Journal of hazardous materials, vol.166, no.1, 531-537.

  176. Wu, Zhongyi, Zhao, Guohua, Zhang, Yajun, Liu, Jian, Zhang, Ya-nan, Shi, Huijie. A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.7, 3416-3424.

  177. Zhang, Yan, Li, Jinhua, Bai, Jing, Li, Linsen, Xia, Ligang, Chen, Shuai, Zhou, Baoxue. Dramatic enhancement of organics degradation and electricity generation via strengthening superoxide radical by using a novel 3D AQS/PPy-GF cathode. Water research, vol.125, 259-269.

  178. Zhou, Zhaoyu, Wu, Zhongyi, Xu, Qunjie, Zhao, Guohua. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.48, 25450-25459.

  179. Kim, J., Choi, W.J.K., Choi, J., Hoffmann, M.R., Park, H.. Electrolysis of urea and urine for solar hydrogen. Catalysis today, vol.199, 2-7.

  180. Cho, Kangwoo, Hoffmann, Michael R.. Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: Current and energy efficiency. Applied catalysis. B, Environmental, vol.202, 671-682.

  181. Liu, Yanbiao, Xie, Jianping, Ong, Choon Nam, Vecitis, Chad D., Zhou, Zhi. Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environmental science : water research & technology, vol.1, no.6, 769-778.

  182. Cho, Kangwoo, Kwon, Daejung, Hoffmann, Michael R.. Electrochemical treatment of human waste coupled with molecular hydrogen production. RSC advances, vol.4, no.9, 4596-4608.

  183. Jiang, Juyuan, Chang, Ming, Pan, Peng. Simultaneous Hydrogen Production and Electrochemical Oxidation of Organics Using Boron-Doped Diamond Electrodes. Environmental science & technology, vol.42, no.8, 3059-3063.

  184. Juang, Ruey-Shin, Lin, Li-Chun. Treatment of complexed Copper(II) solutions with electrochemical membrane processes. Water research, vol.34, no.1, 43-50.

  185. Szpyrkowicz, L., Zilio-Grandi, F., Kaul, S. N., Polcaro, A. M.. Copper Electrodeposition and Oxidation of Complex Cyanide from Wastewater in an Electrochemical Reactor with a Ti/Pt Anode. Industrial & engineering chemistry research, vol.39, no.7, 2132-2139.

  186. Kim, Jungwon, Kwon, Daejung, Kim, Kitae, Hoffmann, Michael R.. Electrochemical Production of Hydrogen Coupled with the Oxidation of Arsenite. Environmental science & technology, vol.48, no.3, 2059-2066.

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로