최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Materials, v.12 no.1, 2019년, pp.16 -
Tang, Ding (State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China) , Fang, Wenli (tangding@sjtu.edu.cn (D.T.)) , Fan, Xiaohui (Fangwll0@126.com (W.F.)) , Zou, Tianxia (Fanxhh0@126.com (X.F.)) , Li, Zihan (TianxiaZou0@126.com (T.Z.)) , Wang, Huamiao (Zihanllx@126.com (Z.L.)) , Li, Dayong (dylixx0@126.com (D.L.)) , Peng, Yinghong (yhpengx0@126.com (Y.P.)) , Wu, Peidong (State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China)
Microchannel tube (MCT) is widely employed in industry due to its excellent efficiency in heat transfer. An MCT is commonly produced through extrusion within a porthole die, where severe plastic deformation is inevitably involved. Moreover, the plastic deformation, which dramatically affects the fin...
1. Tang D. Fan X. Fang W. Li D. Peng Y. Wang H. Microstructure and mechanical properties development of micro channel tubes in extrusion, rolling and brazing Mater. Charact. 2018 142 449 457 10.1016/j.matchar.2018.06.010
2. Doherty R.D. Hughes D.A. Humphreys F.J. Jonas J.J. Jensen D.J. Kassner M.E. Kingg W.E. McNelleyh T.R. McQueeni H.J. Rollettj A.D. Current issues in recrystallization: A review Mater. Sci. Eng. A 1997 238 219 274 10.1016/S0921-5093(97)00424-3
3. Gourdet S. Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium Mater. Sci. Eng. A 2000 283 274 288 10.1016/S0921-5093(00)00733-4
4. Barnett M.R. Montheillet F. The gerneration of new high-angle boundaries in aluminum during hot torsion Acta Mater. 2002 50 2285 2296 10.1016/S1359-6454(02)00048-4
5. McQueeni H.J. Development of dynamic recrystallization theory Mater. Sci. Eng. A 2004 387–389 203 208 10.1016/j.msea.2004.01.064
6. Gourdet S. Montheillet F. A model of continuous dynamic recrystallization Acta Mater. 2003 51 2685 2699 10.1016/S1359-6454(03)00078-8
7. Gagliardi F. Citrea T. Ambrogio G. Filice L. Influence of the process setup on the microstructure and mechanical properties evolution in porthole die extrusion Mater. Des. 2014 60 274 281 10.1016/j.matdes.2014.04.004
8. Fan X. Tang D. Fang W. Li D. Peng Y. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion Mater. Charact. 2016 118 468 480 10.1016/j.matchar.2016.06.025
9. Molinari A. Canova G.R. Ahzi S. A self-consistent approach of the large deformation polycrystal viscoplasticity Acta Met. 1987 35 2983 2994 10.1016/0001-6160(87)90297-5
10. Lebensohn R.A. Tomé C.N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys Acta Met. Mater. 1993 41 2611 2624 10.1016/0956-7151(93)90130-K
11. Wang H. Wu P.D. Tomé C.N. Huang Y. A finite strain elastic–viscoplastic self-consistent model for polycrystalline materials J. Mech. Phys. Solids 2010 58 594 612 10.1016/j.jmps.2010.01.004
12. Wang H. Wu P.D. Tomé C.N. Wang J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals Mater. Sci. Eng. A 2012 555 93 98 10.1016/j.msea.2012.06.038
13. Wang H. Wu P.D. Wang J. Tomé C.N. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms Int. J. Plast. 2013 49 36 52 10.1016/j.ijplas.2013.02.016
14. Wang H. Capolungo L. Clausen B. Tomé C.N. A crystal plasticity model based on transition state theory Int. J. Plast. 2017 93 251 268 10.1016/j.ijplas.2016.05.003
15. Wang H. Wu P.D. Kurukuri S. Worswick M.J. Peng Y.H. Tang D. Li D.Y. Strain rate sensitivities of deformation mechanisms in magnesium alloys Int. J. Plast. 2018 107 207 222 10.1016/j.ijplas.2018.04.005
16. Mayama T. Noda M. Chiba R. Kuroda M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion Int. J. Plast. 2011 27 1916 1935 10.1016/j.ijplas.2011.02.007
17. Gall S. Müller S. Reimers W. Microstructure and mechanical properties of magnesium AZ31 sheets produced by extrusion Int. J. Mater. Form. 2013 6 187 197 10.1007/s12289-011-1069-0
18. Arruffat-Massion R. Tóth L.S. Mathieu J.P. Modeling of deformation and texture development of copper in a 120° ECAE die Scr. Mater. 2012 54 1667 1672 10.1016/j.scriptamat.2006.01.004
19. Flitta I. Sheppard T. Nature of friction in extrusion process and its effect on material flow Mater. Sci. Technol. 2003 19 837 846 10.1179/026708303225004422
20. Zhou J. Li L. Duszczyk J. 3D FEM simulation of the whole cycle of aluminium extrusion throughout the transient state and the steady state using the updated Lagrangian approach J. Mater. Process. Technol. 2003 134 383 397 10.1016/S0924-0136(02)01128-7
21. Knezevic M. McCabe R.J. Lebensohn R.A. Tomé C.N. Liu C. Lovato M.L. Mihaila B. Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals J. Mech. Phys. Solids 2013 61 2034 2046 10.1016/j.jmps.2013.05.005
22. Tang D. Zhang QLi D. Peng Y. A physical simulation of longitudinal seam welding in microchannel tube extrusion J. Mater. Process. Technol. 2014 214 2777 2783 10.1016/j.jmatprotec.2014.06.004
23. Tóth L.S. Modelling of strain hardening and microstructural evolution in equal channel angular extrusion Comput. Mater. Sci. 2005 32 568 576 10.1016/j.commatsci.2004.09.007
24. Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1957 241 376 396 10.1098/rspa.1957.0133
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.