최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Frontiers in plant science, v.9, 2018년, pp.1931 -
Lee, Sang Joon , Park, JooYoung , Ryu, Jeongeun
Porous structures, such as perforation plates and pit membranes, have attracted considerable attention due to their hydraulic regulation of water flow through vascular plant networks. However, limited information is available regarding the hydraulic functions of such structures during water-refillin...
Berthier J. ( 2008 ). Microdrops and Digital Microfluidics. New York, NY : Wiliam Andrew .
Brodersen C. R. Knipfer T. McElrone A. J. ( 2018 ). In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems . New Phytol. 217 , 117 – 126 . 10.1111/nph.14811 28940305
Brodersen C. R. McElrone A. J. ( 2013 ). Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants . Front. Plant. Sci. 4 : 108 . 10.3389/fpls.2013.00108 23630539
Christman M. A. Sperry J. S. ( 2010 ). Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated . Plant Cell Environ. 33 , 431 – 443 . 10.1111/j.1365-3040.2009.02094.x 20002331
Ellerby D. J. Ennos A. R. ( 1998 ). Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates . J. Exp. Bot. 49 , 979 – 985 . 10.1093/jexbot/49.323.979
Feild T. S. Brodribb T. J. ( 2013 ). Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks . New Phytol. 199 , 720 – 726 . 10.1111/nph.12311 23668223
Gevú K. V. Lima H. R. P. Kress J. Da Cunha M. ( 2017 ). Morphological analysis of vessel elements for systematic study of three Zingiberaceae tribes . J. Plant. Res. 130 , 527 – 538 . 10.1007/s10265-017-0911-y 28255816
Hwang B. G. Ahn S. Lee S. J. ( 2014 ). Use of gold nanoparticles to detect water uptake in vascular plants . PLoS ONE 9 : e114902 . 10.1371/journal.pone.0114902 25502567
Hwang B. G. Ryu J. Lee S. J. ( 2016 ). Vulnerability of protoxylem and metaxylem vessels to embolisms and radial refilling in a vascular bundle of maize leaves . Front. Plant. Sci. 7 : 941 . 10.3389/fpls.2016.00941 27446168
Jansen S. Baas P. Gasson P. Lens F. Smets E. ( 2004 ). Variation in xylem structure from tropics to tundra: Evidence from vestured pits . Proc. Natl. Acad. Sci. U. S. A. 101 , 8833 – 8837 . 10.1073/pnas.0402621101 15163796
Jeje A. Y. A. Zimmermann M. H. ( 1979 ). Resistance to water flow in xylem vessels . J. Exp. Bot. 30 , 817 – 827 . 10.1093/jxb/30.4.817
Jensen K. H. Berg-Sorensen K. Bruus H. Holbrook N. M. Liesche J. Schulz A. ( 2016 ). Sap flow and sugar transport in plants . Rev. Mod. Phys. 88 , 035007 10.1103/RevModPhys.88.035007
Kim H. K. Lee S. J. ( 2010 ). Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves . New Phytol. 188 , 1085 – 1098 . 10.1111/j.1469-8137.2010.03424.x 20735745
Lee S. J. Hwang B. G. Kim H. K. ( 2013 ). Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis . Planta 238 , 307 – 315 . 10.1007/s00425-013-1889-x 23657840
Lee S. J. Kim Y. ( 2008 ). In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging . Ann. Bot. 101 , 595 – 602 . 10.1093/aob/mcm312 18077466
Lens F. Vos R. A. Charrier G. van der Niet T. Merckx V. Baas P. ( 2016 ). Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae . Ann. Bot. 118 , 1043 – 1056 . 10.1093/aob/mcw151
Mannino R. G. Myers D. R. Ahn B. Wang Y. Margo R. Gole H. . ( 2015 ). Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions . Sci. Rep. 5 : 12401 . 10.1038/srep12401 26202603
McCully M. Canny M. Baker A. Miller C. ( 2014 ). Some properties of the walls of metaxylem vessels of maize roots . Ann Bot. 113 , 977 – 989 . 10.1093/aob/mcu020 24709790
Meylan B. A. Butterfield B. G. ( 1975 ). Occurrence of simple, multiple, and combination perforation plates in the vessels of New Zealand woods . New Zeal. J. Bot. 13 , 1 – 18 . 10.1080/0028825x.1975.10428879
Olson M. E. Rosell J. A. ( 2013 ). Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation . New Phytol. 197 , 1204 – 1213 . 10.1111/nph.12097 23278439
Rosell J. A. Olson M. E. Anfodillo T. ( 2017 ). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions . Curr. Forestry Rep. 3 , 46 – 59 . 10.1007/s40725-017-0049-0
Rueden C. T. Schindelin J. Hiner M. C. DeZonia B. E. Walter A. E. Arena E. T. . ( 2017 ). ImageJ2: ImageJ for the next generation of scientific image data . BMC Bioinformatics 18 , 529 . 10.1186/s12859-017-1934-z 29187165
Schenk H. J. Espino S. Visser A. Esser B. K. ( 2016 ). Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry . Plant Cell Environ. 39 , 944 – 950 . 10.1111/pce.12678 26868162
Schulte P. ( 1999 ). Water flow through a 20-pore perforation plate in vessels of Liquidambar styraciflua . J. Exp. Bot. 50 , 1179 – 1187 . 10.1093/jxb/50.336.1179
Schulte P. J. Castle A. L. ( 1993a ). Water flow through vessel perforation plates—A fluid mechanical approach . J. Exp. Bot. 44 , 1135 – 1142 . 10.1093/jxb/44.7.1135
Schulte P. J. Castle A. L. ( 1993b ). Water flow through vessel perforation plates—The effect of plate angle and thickness for Liriodendron tulipifera . J. Exp. Bot. 44 , 1143 – 1148 . 10.1093/jxb/44.7.1143
Sperry J. ( 2013 ). Cutting-edge research or cutting-edge artefact? An overdue control experiment complicates the xylem refilling story . Plant Cell Environ. 36 , 1916 – 1918 . 10.1111/pce.12148 23763611
Sperry J. S. ( 1986 ). Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa . Plant Physiol. 80 , 110 – 116 . 10.1104/pp.80.1.110 16664563
Sperry J. S. ( 2003 ). Evolution of water transport and xylem structure . Int. J. Plant Sci. 164 , S115 – S127 . 10.1086/368398
Sperry J. S. Hacke U. G. Wheeler J. K. ( 2005 ). Comparative analysis of end wall resistivity in xylem conduits . Plant Cell Environ. 28 , 456 – 465 . 10.1111/j.1365-3040.2005.01287.x
Tyree M. T. Yang S. ( 1992 ). Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum . Plant Physiol. 100 , 669 – 676 . 16653045
Tyree M. T. Zimmermann M. H. ( 2002 ). Xylem Structure and the Ascent of Sap. Berlin : Springer .
Venturas M. D. Mackinnon E. D. Jacobsen A. L. Pratt R. B. ( 2015 ). Excising stem samples underwater at native tension does not induce xylem cavitation . Plant Cell Environ. 38 , 1060 – 1068 . 10.1111/pce.12461 25292257
Wheeler J. K. Huggett B. A. Tofte A. N. Rockwell F. E. Holbrook N. M. ( 2013 ). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism . Plant Cell Environ. 36 , 1938 – 1949 . 10.1111/pce.12139 23701011
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.