$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Hydrodynamic Study on the “Stop-and-Acceleration” Pattern of Refilling Flow at Perforation Plates by Using a Xylem-Inspired Channel 원문보기

Frontiers in plant science, v.9, 2018년, pp.1931 -   

Lee, Sang Joon ,  Park, JooYoung ,  Ryu, Jeongeun

Abstract AI-Helper 아이콘AI-Helper

Porous structures, such as perforation plates and pit membranes, have attracted considerable attention due to their hydraulic regulation of water flow through vascular plant networks. However, limited information is available regarding the hydraulic functions of such structures during water-refillin...

Keyword

참고문헌 (36)

  1. Berthier J. ( 2008 ). Microdrops and Digital Microfluidics. New York, NY : Wiliam Andrew . 

  2. Brodersen C. R. Knipfer T. McElrone A. J. ( 2018 ). In vivo visualization of the final stages of xylem vessel refilling in grapevine (Vitis vinifera) stems . New Phytol. 217 , 117 – 126 . 10.1111/nph.14811 28940305 

  3. Brodersen C. R. McElrone A. J. ( 2013 ). Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants . Front. Plant. Sci. 4 : 108 . 10.3389/fpls.2013.00108 23630539 

  4. Christman M. A. Sperry J. S. ( 2010 ). Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated . Plant Cell Environ. 33 , 431 – 443 . 10.1111/j.1365-3040.2009.02094.x 20002331 

  5. Ellerby D. J. Ennos A. R. ( 1998 ). Resistances to fluid flow of model xylem vessels with simple and scalariform perforation plates . J. Exp. Bot. 49 , 979 – 985 . 10.1093/jexbot/49.323.979 

  6. Feild T. S. Brodribb T. J. ( 2013 ). Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks . New Phytol. 199 , 720 – 726 . 10.1111/nph.12311 23668223 

  7. Fort T. J. R. ( 1964 ). The wettability of a homologous series of nylon polymers . Advn. Chem. 43 , 302 – 309 . 10.1021/ba-1964-0043.ch021 

  8. Gevú K. V. Lima H. R. P. Kress J. Da Cunha M. ( 2017 ). Morphological analysis of vessel elements for systematic study of three Zingiberaceae tribes . J. Plant. Res. 130 , 527 – 538 . 10.1007/s10265-017-0911-y 28255816 

  9. Hwang B. G. Ahn S. Lee S. J. ( 2014 ). Use of gold nanoparticles to detect water uptake in vascular plants . PLoS ONE 9 : e114902 . 10.1371/journal.pone.0114902 25502567 

  10. Hwang B. G. Ryu J. Lee S. J. ( 2016 ). Vulnerability of protoxylem and metaxylem vessels to embolisms and radial refilling in a vascular bundle of maize leaves . Front. Plant. Sci. 7 : 941 . 10.3389/fpls.2016.00941 27446168 

  11. Jansen S. Baas P. Gasson P. Lens F. Smets E. ( 2004 ). Variation in xylem structure from tropics to tundra: Evidence from vestured pits . Proc. Natl. Acad. Sci. U. S. A. 101 , 8833 – 8837 . 10.1073/pnas.0402621101 15163796 

  12. Jeje A. Y. A. Zimmermann M. H. ( 1979 ). Resistance to water flow in xylem vessels . J. Exp. Bot. 30 , 817 – 827 . 10.1093/jxb/30.4.817 

  13. Jensen K. H. Berg-Sorensen K. Bruus H. Holbrook N. M. Liesche J. Schulz A. ( 2016 ). Sap flow and sugar transport in plants . Rev. Mod. Phys. 88 , 035007 10.1103/RevModPhys.88.035007 

  14. Kim H. K. Lee S. J. ( 2010 ). Synchrotron X-ray imaging for nondestructive monitoring of sap flow dynamics through xylem vessel elements in rice leaves . New Phytol. 188 , 1085 – 1098 . 10.1111/j.1469-8137.2010.03424.x 20735745 

  15. Lee S. J. Hwang B. G. Kim H. K. ( 2013 ). Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis . Planta 238 , 307 – 315 . 10.1007/s00425-013-1889-x 23657840 

  16. Lee S. J. Kim Y. ( 2008 ). In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging . Ann. Bot. 101 , 595 – 602 . 10.1093/aob/mcm312 18077466 

  17. Lens F. Vos R. A. Charrier G. van der Niet T. Merckx V. Baas P. ( 2016 ). Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae . Ann. Bot. 118 , 1043 – 1056 . 10.1093/aob/mcw151 

  18. Mannino R. G. Myers D. R. Ahn B. Wang Y. Margo R. Gole H. . ( 2015 ). Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions . Sci. Rep. 5 : 12401 . 10.1038/srep12401 26202603 

  19. McCully M. Canny M. Baker A. Miller C. ( 2014 ). Some properties of the walls of metaxylem vessels of maize roots . Ann Bot. 113 , 977 – 989 . 10.1093/aob/mcu020 24709790 

  20. Meylan B. A. Butterfield B. G. ( 1975 ). Occurrence of simple, multiple, and combination perforation plates in the vessels of New Zealand woods . New Zeal. J. Bot. 13 , 1 – 18 . 10.1080/0028825x.1975.10428879 

  21. Olson M. E. Rosell J. A. ( 2013 ). Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation . New Phytol. 197 , 1204 – 1213 . 10.1111/nph.12097 23278439 

  22. Rosell J. A. Olson M. E. Anfodillo T. ( 2017 ). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions . Curr. Forestry Rep. 3 , 46 – 59 . 10.1007/s40725-017-0049-0 

  23. Rueden C. T. Schindelin J. Hiner M. C. DeZonia B. E. Walter A. E. Arena E. T. . ( 2017 ). ImageJ2: ImageJ for the next generation of scientific image data . BMC Bioinformatics 18 , 529 . 10.1186/s12859-017-1934-z 29187165 

  24. Schenk H. J. Espino S. Visser A. Esser B. K. ( 2016 ). Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry . Plant Cell Environ. 39 , 944 – 950 . 10.1111/pce.12678 26868162 

  25. Schulte P. ( 1999 ). Water flow through a 20-pore perforation plate in vessels of Liquidambar styraciflua . J. Exp. Bot. 50 , 1179 – 1187 . 10.1093/jxb/50.336.1179 

  26. Schulte P. J. Castle A. L. ( 1993a ). Water flow through vessel perforation plates—A fluid mechanical approach . J. Exp. Bot. 44 , 1135 – 1142 . 10.1093/jxb/44.7.1135 

  27. Schulte P. J. Castle A. L. ( 1993b ). Water flow through vessel perforation plates—The effect of plate angle and thickness for Liriodendron tulipifera . J. Exp. Bot. 44 , 1143 – 1148 . 10.1093/jxb/44.7.1143 

  28. Schulte P. J. Gibson A. C. Nobel P. S. ( 1989 ). Water flow in vessels with simple or compound perforation plates . Ann. Bot. 64 , 171 – 178 . 10.1093/oxfordjournals.aob.a087822 

  29. Sperry J. ( 2013 ). Cutting-edge research or cutting-edge artefact? An overdue control experiment complicates the xylem refilling story . Plant Cell Environ. 36 , 1916 – 1918 . 10.1111/pce.12148 23763611 

  30. Sperry J. S. ( 1986 ). Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa . Plant Physiol. 80 , 110 – 116 . 10.1104/pp.80.1.110 16664563 

  31. Sperry J. S. ( 2003 ). Evolution of water transport and xylem structure . Int. J. Plant Sci. 164 , S115 – S127 . 10.1086/368398 

  32. Sperry J. S. Hacke U. G. Wheeler J. K. ( 2005 ). Comparative analysis of end wall resistivity in xylem conduits . Plant Cell Environ. 28 , 456 – 465 . 10.1111/j.1365-3040.2005.01287.x 

  33. Tyree M. T. Yang S. ( 1992 ). Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum . Plant Physiol. 100 , 669 – 676 . 16653045 

  34. Tyree M. T. Zimmermann M. H. ( 2002 ). Xylem Structure and the Ascent of Sap. Berlin : Springer . 

  35. Venturas M. D. Mackinnon E. D. Jacobsen A. L. Pratt R. B. ( 2015 ). Excising stem samples underwater at native tension does not induce xylem cavitation . Plant Cell Environ. 38 , 1060 – 1068 . 10.1111/pce.12461 25292257 

  36. Wheeler J. K. Huggett B. A. Tofte A. N. Rockwell F. E. Holbrook N. M. ( 2013 ). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism . Plant Cell Environ. 36 , 1938 – 1949 . 10.1111/pce.12139 23701011 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로