$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Aerodynamic characteristics of flexible wings with leading-edge veins in pitch motions

Aerospace science and technology, v.86, 2019년, pp.558 - 571  

Ryu, YeongGyun (Department of Aerospace Engineering, Ryerson University) ,  Chang, Jo Won (Department of Aeronautical Science and Flight Operation, Korea Aerospace University) ,  Chung, Joon (Department of Aerospace Engineering, Ryerson University)

Abstract AI-Helper 아이콘AI-Helper

Abstract To demonstrate the effects of wing deformations on aerodynamic performances during the wing reversal, aerodynamic force/torque and flow vector-fields were measured. Wing models consisted of wing planes with various thicknesses and two leading-edge veins, which obstructed spanwise deformati...

주제어

참고문헌 (54)

  1. J. Exp. Biol. Lehmann 214 2949 2011 10.1242/jeb.045351 Elastic deformation and energy loss of flapping fly wings 

  2. J. Exp. Biol. Fontaine 212 1307 2009 10.1242/jeb.025379 Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking 

  3. Integr. Comp. Biol. Daniel 42 1044 2002 10.1093/icb/42.5.1044 Flexible wings and fins: bending by inertial or fluid-dynamic forces? 

  4. J. Exp. Biol. Combes 206 2979 2003 10.1242/jeb.00523 Flexural stiffness in insect wings. I. Scaling and the influence of wing venation 

  5. J. Exp. Biol. Combes 206 2989 2003 10.1242/jeb.00524 Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending 

  6. J. Exp. Biol. Dickinson 174 45 1993 10.1242/jeb.174.1.45 Unsteady aerodynamic performance of model wings at low Reynolds numbers 

  7. Nature Ellington 384 626 1996 10.1038/384626a0 Leading-edge vortices in insect flight 

  8. Science Dickinson 284 1954 1999 10.1126/science.284.5422.1954 Wing rotation and the aerodynamic basis of insect flight 

  9. J. Exp. Biol. Sane 205 1087 2002 10.1242/jeb.205.8.1087 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight 

  10. J. Exp. Biol. Usherwood 205 1547 2002 10.1242/jeb.205.11.1547 The aerodynamics of revolving wings I. Model hawkmoth wings 

  11. J. Exp. Biol. Sun 205 55 2002 10.1242/jeb.205.1.55 Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion 

  12. J. Exp. Biol. Du 213 2273 2010 10.1242/jeb.040295 Effects of wing deformation on aerodynamic forces in hovering hoverflies 

  13. Adv. Robot. Hamamoto 21 1 2007 10.1163/156855307779293643 Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings 

  14. Exp. Fluids Lua 49 1263 2010 10.1007/s00348-010-0873-5 On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings 

  15. J. R. Soc. Interface Walker 7 131 2010 10.1098/rsif.2009.0120 Deformable wing kinematics in free-flying hoverflies 

  16. J. Comput. Phys. Nakata 231 1822 2012 10.1016/j.jcp.2011.11.005 A fluid-structure interaction model of insect flight with flexible wings 

  17. Aerosp. Sci. Technol. Ryu 56 183 2016 10.1016/j.ast.2016.07.011 Aerodynamic force and vortex structures of flapping flexible hawkmoth-like wings 

  18. J. Exp. Biol. Ramamurti 205 1507 2002 10.1242/jeb.205.10.1507 A three-dimensional computational study of the aerodynamic mechanisms of insect flight 

  19. J. Exp. Biol. Wu 207 1137 2004 10.1242/jeb.00868 Unsteady aerodynamic forces of a flapping wing 

  20. J. Exp. Biol. Birch 206 2257 2003 10.1242/jeb.00381 The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight 

  21. Exp. Fluids Lua 51 177 2011 10.1007/s00348-010-1032-8 Effect of wing-wake interaction on aerodynamic force generation on a 2D flapping wing 

  22. J. Aircr. Han 52 1256 2015 10.2514/1.C032768 Role of trailing edge vortices on the hawkmoth-like flapping wing 

  23. J. Bionics Eng. Ryu 15 139 2018 10.1007/s42235-017-0011-7 Experimental investigation of flexible hawkmoth-like wings on the wing-wake interaction in hovering flight 

  24. J. R. Soc. Interface Zhao 7 485 2010 10.1098/rsif.2009.0200 Aerodynamic effects of flexibility in flapping wings 

  25. J. Fluid Mech. Dai 693 473 2012 10.1017/jfm.2011.543 Dynamic pitching of an elastic rectangular wing in hovering motion 

  26. Bioinspir. Biomim. Sridhar 10 2015 10.1088/1748-3190/10/3/036007 Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight 

  27. J. Bionics Eng. Cheng 12 432 2015 10.1016/S1672-6529(14)60134-7 Effects of chordwise flexibility on the aerodynamic performance of a 3D flapping wing 

  28. J. Fluid Mech. Harbig 730 52 2013 10.1017/jfm.2013.335 Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms 

  29. Feaster 2015 ASME/JSME/KSME 2015 Joint Fluids Engineering Conference A computational study of insect wing cross-sectional geometry on flight performance 

  30. Biol. Open Feaster 6 1784 2017 10.1242/bio.024612 A computational study on the influence of insect wing geometry on bee flight mechanics 

  31. Philos. Trans. R. Soc. Lond. Ser. B Ellington 305 41 1984 10.1098/rstb.1984.0051 The aerodynamics of hovering insect flight. III. Kinematics 

  32. J. Exp. Biol. Lentink 212 2691 2009 10.1242/jeb.022251 Biofluiddynamic scaling of flapping, spinning and translating fins and wings 

  33. J. Exp. Biol. Willmott 200 2705 1997 10.1242/jeb.200.21.2705 The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight 

  34. J. Exp. Biol. Sun 205 2413 2002 10.1242/jeb.205.16.2413 Lift and power requirements of hovering flight in Drosophila virilis 

  35. Bioinspir. Biomim. Han 9 2014 10.1088/1748-3182/9/4/046012 Reynolds number dependency of an insect-based flapping wing 

  36. J. Fluid Mech. Han 808 485 2016 10.1017/jfm.2016.629 The advance ratio effect on the lift augmentations of an insect-like fapping wing in forward flight 

  37. Prog. Aerosp. Sci. Shyy 46 284 2010 10.1016/j.paerosci.2010.01.001 Recent progress in flapping wing aerodynamics and aeroelasticity 

  38. AIAA J. Lua 52 1095 2014 10.2514/1.J052730 Scaling of aerodynamic forces of three-dimensional flapping wings 

  39. Bioinspir. Biomim. Han 10 2015 10.1088/1748-3190/10/4/046014 An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure 

  40. Curr. Sci. Prasad 79 51 2000 Particle image velocimetry 

  41. AIAA J. Shyy 45 2817 2007 10.2514/1.33205 Flapping wings and aerodynamic lift: the role of leading-edge vortices 

  42. J. Open Res. Softw. Thielicke 2 e30 2014 10.5334/jors.bl PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB 

  43. Exp. Fluids Han 56 1 2015 10.1007/s00348-015-2049-9 Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover 

  44. Exp. Fluids Forliti 28 436 2000 10.1007/s003480050403 Bias and precision errors of digital particle image velocimetry 

  45. J. Aircr. Tsuzuki 44 252 2007 10.2514/1.23165 Design guidelines of rotary wings in hover for insect-scale micro air vehicle applications 

  46. Science Young 325 1549 2009 10.1126/science.1175928 Details of insect wing design and deformation enhance aerodynamic function and flight efficiency 

  47. AIAA J. Gopalakrishnan 48 865 2010 10.2514/1.39957 Effect of wing flexibility on lift and thrust production in flapping flight 

  48. Phys. Fluids Yin 22 2010 10.1063/1.3499739 Effect of wing inertia on hovering performance of flexible flapping wings 

  49. J. Fluid Mech. Eldredge 659 99 2010 10.1017/S0022112010002363 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics 

  50. Exp. Fluids Poelma 41 213 2006 10.1007/s00348-006-0172-3 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing 

  51. Phys. Fluids Kweon 22 2010 10.1063/1.3471593 Sectional lift coefficient of a flapping wing in hovering motion 

  52. J. Fluid Mech. Bross 756 354 2014 10.1017/jfm.2014.458 Flow structure on a simultaneously pitching and rotating wing 

  53. J. Exp. Biol. Lentink 212 2705 2009 10.1242/jeb.022269 Rotational accelerations stabilize leading edge vortices on revolving fly wings 

  54. J. Fluid Mech. Harbig 751 71 2014 10.1017/jfm.2014.262 The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로