$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Confinement induces helical organization of chromosome-like polymers 원문보기

Scientific reports, v.9, 2019년, pp.869 -   

Jung, Youngkyun (Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, 34141 Korea) ,  Ha, Bae-Yeun (Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada)

Abstract AI-Helper 아이콘AI-Helper

Helical organization is commonly observed for a variety of biopolymers. Here we study the helical organization of two types of biopolymers, i.e., DNA-like semiflexible and bottle-brush polymers, in a cell-like confined space. A bottle-brush polymer consists of a backbone and side chains emanating fr...

참고문헌 (35)

  1. 1. Dill KA Principles of protein folding–a perspective from simple exact models Protein Sci. 1995 4 561 602 10.1002/pro.5560040401 7613459 

  2. 2. Buehler MJ Nature designs tough collagen: Explaining the nanostructure of collagen fibrils Proc. Natl, Acad. Sci 2006 103 12285 12290 10.1073/pnas.0603216103 16895989 

  3. 3. Le TBK Imakaev MV Mirny LA Laub MT High-resolution mapping of the spatial organization of a bacterial chromosome Science 2013 342 731 734 10.1126/science.1242059 24158908 

  4. 4. Fisher JK Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells Cell 2013 153 882 895 10.1016/j.cell.2013.04.006 23623305 

  5. 5. Berlatzky IA Rouvinski A Ben-Yehuda S Spatial organization of a replicating bacterial chromosome Proc. Natl. Acad. Sci 2008 105 14136 14140 10.1073/pnas.0804982105 18779567 

  6. 6. Yazdi NH Guet CC Johnson RC Marko JF Variation of the folding and dynamics of the Escherichia col i chromosome with growth conditions Mol. Microbiol. 2012 86 1318 1333 10.1111/mmi.12071 23078205 

  7. 7. Chan H-K Densest columnar structures of hard spheres from sequential deposition Phys. Rev. E 2011 84 050302(R) 1–4 10.1103/PhysRevE.84.050302 

  8. 8. Wang X Llopis PM Rudner DZ Organization and segregation of bacterial chromosomes Nat. Rev. Genet. 2013 14 191 203 10.1038/nrg3375 23400100 

  9. 9. Ha B-Y Jung Y Polymers under confinement: single polymers, how they interact, and as model chromosomes Soft Matter 2015 11 2333 2352 10.1039/C4SM02734E 25710099 

  10. 10. Jun S Wright A Entropy as the driver of chromosome segregation Nat. Rev. Microbiol. 2010 8 600 607 10.1038/nrmicro2391 20634810 

  11. 11. Pelletier J Physical manipulation of the Escherichia coli chromosome reveals its soft nature Proc. Nat. Acad. Sci. USA 2012 109 E2649 E2656 10.1073/pnas.1208689109 22984156 

  12. 12. Benza VG Physical descriptions of the bacterial nucleoid at large scales, and their biological implications Rep. Prog. Phys. 2012 75 076602 1–20 10.1088/0034-4885/75/7/076602 22790781 

  13. 13. Hsu H-P Paul W Rathgeber S Binder K Characteristic length scales and radial monomer density profiles of molecular bottle-brushes: simulation and experiment Macromolecules 2010 43 1592 1601 10.1021/ma902101n 

  14. 14. Paturej J Sheiko SS Panyukov S Rubinstein M Molecular structure of bottlebrush polymers in melts Sci. Adv. 2016 2 e1601478 1–12 10.1126/sciadv.1601478 28861466 

  15. 15. Calladine, C. R., Drew, H., Luisi, B. & Travers, A. Understanding DNA: The Molecule and How it Works , 3rd edit. (Academic Press, 2004). 

  16. 16. Jian H Schlick T Vologodskii A Internal motion of supercoiled DNA: Brownian dynamics simulations of site juxtapostion J. Mol. Biol. 1998 284 287 296 10.1006/jmbi.1998.2170 9813118 

  17. 17. Hayase Y Sakaue T Nakanishi H Compressive response and helix formation of a semiflexible polymer confined in a nanochannel Phys. Rev. E 2017 95 052502 1–6 10.1103/PhysRevE.95.052502 28618466 

  18. 18. Chaudhuri D Mulder BM Spontaneous helicity of a polymer with side loops confined to a cylinder Phys. Rew. Lett. 2012 108 268305 1–5 10.1103/PhysRevLett.108.268305 

  19. 19. Wu F Cell boundary confinement sets the size and position of the E. coli chromosome bioRxiv 2018 10.1101/348052 

  20. 20. Kremer K Grest GS Dynamics of entangled linear polymer melts: A molecular-dynamics simulation J. Chem. Phys. 1990 92 5057 5086 10.1063/1.458541 

  21. 21. Grest GS Kremer K Molecular dynamics simulation for polymers in the presence of a heat bath Phys. Rev. A 1986 33 R3628 R3631 10.1103/PhysRevA.33.3628 

  22. 22. Weeks JD Chandler D Andersen HC Role of repulsive forces in determining the equilibrium structure of simple liquids J. Chem. Phys. 1971 54 5237 5247 10.1063/1.1674820 

  23. 23. de Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell University Press, 1979). 

  24. 24. Allison SA Brownian dynamics simulation of Wormlike chains. Fluorescence depolarization and depolarized light scattering Macromolecules 1986 19 118 124 10.1021/ma00155a019 

  25. 25. Plimpton S Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys. 1995 117 1 19 10.1006/jcph.1995.1039 

  26. 26. Bates, A. D. & Maxwell, A. DNA Topology (Oxford University Press, 2005). 

  27. 27. Klenin K Langowski J Computation of writhe in modeling of supercoiled DNA Biopolymers 2000 54 307 317 10.1002/1097-0282(20001015)54:5 3.0.CO;2-Y 10935971 

  28. 28. Reisner W Pedersen JN Austin RH DNA confinement in nanochannels: physics and biological applications Rep. Prog. Phys. 2012 75 106601 1–34 10.1088/0034-4885/75/10/106601 22975868 

  29. 29. Jun S Thirumalai D Ha B-Y Compression and stretching of a self-avoiding chain in cylindrical nanopores Phys. Rev. Lett. 2008 101 138101 1–4 10.1103/PhysRevLett.101.138101 18851496 

  30. 30. Wang Y Tree DR Dorfman KD Simulation of DNA extension in nanochannels Macromolecules 2011 44 6594 6604 10.1021/ma201277e 21860535 

  31. 31. Khorshid A Amin S Zhang Z Sakaue T Reisner W Nonequilibrium dynamics of nanochannel confined DNA Macromolecules 2016 49 1933 1940 10.1021/acs.macromol.5b02240 

  32. 32. Jung Y Ring polymers as model bacterial chromosomes: confinement, chain topology, single chain statistics, and how they interact Soft Matter 2012 8 2095 2102 10.1039/C1SM05706E 

  33. 33. Hsu H-P Binder K Paul W How to define variation of physical properties normal to an undulating one-dimensional object Phys. Rev. Lett. 2009 103 198301 1–4 10.1103/PhysRevLett.103.198301 20365959 

  34. 34. Bakshi S Choi H Weisshaar JC The spatial biology of transcription and translation in rapidly growing Escherichia coli Front. Microbiol. 2015 6 636 1–15 10.3389/fmicb.2015.00636 26191045 

  35. 35. Jeon C Hyeon C Jung Y Ha B-Y How are molecular crowding and the spatial organization of a biopolymer interrelated Soft Matter 2016 12 9786 9796 10.1039/C6SM01924B 27858047 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로