$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Observation of Skyrmions at Room Temperature in Co 2 FeAl Heusler Alloy Ultrathin Film Heterostructures 원문보기

Scientific reports, v.9, 2019년, pp.1085 -   

Husain, Sajid (Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India) ,  Sisodia, Naveen (Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India) ,  Chaurasiya, Avinash Kumar (Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block –) ,  Kumar, Ankit (JD, Sector –) ,  Singh, Jitendra Pal (III, Salt Lake, Kolkata, 700106 India) ,  Yadav, Brajesh S. (Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden) ,  Akansel, Serkan (Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea) ,  Chae, Keun Hwa (Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi, 110054 India) ,  Barman, Anjan (Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden) ,  Muduli, P. K. (Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea) ,  Svedlindh, Peter (Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block –) ,  Chaudhary, Sujeet (JD, Sector –)

Abstract AI-Helper 아이콘AI-Helper

Magnetic skyrmions are topological spin-textures having immense potential for energy efficient spintronic devices. Here, we report the observation of stable skyrmions in unpatterned Ta/Co2FeAl(CFA)/MgO thin film heterostructures at room temperature in remnant state employing magnetic force microscop...

참고문헌 (80)

  1. 1. Mühlbauer S Skyrmion lattice in a chiral magnet Science 2009 323 915 919 10.1126/science.1166767 19213914 

  2. 2. Nagaosa N Tokura Y Topological properties and dynamics of magnetic skyrmions Nat. Nanotechnol. 2013 8 899 911 10.1038/nnano.2013.243 24302027 

  3. 3. Sampaio J Cros V Rohart S Thiaville A Fert A Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures Nat. Nanotechnol. 2013 8 839 44 10.1038/nnano.2013.210 24162000 

  4. 4. Kravchuk VP Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions Phys. Rev. B 2016 94 144402 10.1103/PhysRevB.94.144402 

  5. 5. Hanneken C Electrical detection of magnetic skyrmions by non-collinear magnetoresistance Nat. Nanotechnol. 2015 10 1039 1043 10.1038/nnano.2015.218 26436563 

  6. 6. Siracusano G Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque Phys. Rev. Lett. 2016 117 087204 10.1103/PhysRevLett.117.087204 27588879 

  7. 7. Woo S Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets Nat. Mater. 2016 15 501 506 10.1038/nmat4593 26928640 

  8. 8. Zhang X Skyrmions in Magnetic Tunnel Junctions ACS Appl. Mater. Interfaces 2018 10 16887 16892 10.1021/acsami.8b03812 29682962 

  9. 9. Pribiag VS Magnetic vortex oscillator driven by d.c. spin-polarized current Nat. Phys. 2007 3 498 503 10.1038/nphys619 

  10. 10. Cowburn RP Spintronics: Change of direction Nat. Mater. 2007 6 255 256 10.1038/nmat1877 17401414 

  11. 11. Mistral Q Current-driven vortex oscillations in metallic nanocontacts Phys. Rev. Lett. 2008 100 257201 10.1103/PhysRevLett.100.257201 18643697 

  12. 12. Kim SK Lee KS Yu YS Choi YS Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents Appl. Phys. Lett. 2008 92 022509 10.1063/1.2807274 

  13. 13. Im M-Y Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk Nat. Commun. 2012 3 983 10.1038/ncomms1978 22864576 

  14. 14. Moutafis C Magnetic bubbles in FePt nanodots with perpendicular anisotropy Phys. Rev. B 2007 76 104426 10.1103/PhysRevB.76.104426 

  15. 15. Moutafis CKS Vaz CAF Bland JAC Eames P Vortices in ferromagnetic elements with perpendicular anisotropy Phys. Rev. B 2006 74 214406 10.1103/PhysRevB.74.214406 

  16. 16. Yu X Tokunaga Y Taguchi Y Tokura Y Variation of Topology in Magnetic Bubbles in a Colossal Magnetoresistive Manganite Adv. Mater. 2017 29 1603958 10.1002/adma.201603958 

  17. 17. Yu XZ Real-space observation of a two-dimensional skyrmion crystal Nature 2010 465 901 904 10.1038/nature09124 20559382 

  18. 18. Jamet M High-Curie-temperature ferromagnetism in self-organized Ge 1−x Mn x nanocolumns Nat. Mater. 2006 5 653 659 10.1038/nmat1686 16845420 

  19. 19. Zheng F Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk Phys. Rev. Lett. 2017 119 197205 10.1103/PhysRevLett.119.197205 29219505 

  20. 20. Kumar A Temperature-dependent Gilbert damping of Co 2 FeAl thin films with different degree of atomic order Phys. Rev. B 2017 96 224425 10.1103/PhysRevB.96.224425 

  21. 21. Dzyaloshinsky I A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics J. Phys. Chem. Solids 1958 4 241 255 10.1016/0022-3697(58)90076-3 

  22. 22. Moriya T Anisotropic superexchange interaction and weak ferromagnetism Phys. Rev. 1960 120 91 98 10.1103/PhysRev.120.91 

  23. 23. Fert A Levy PM Role of anisotropic exchange interactions in determining the properties of spin-glasses Phys. Rev. Lett. 1980 44 1538 1541 10.1103/PhysRevLett.44.1538 

  24. 24. Bogdanov A Rößler U Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers Phys. Rev. Lett. 2001 87 037203 10.1103/PhysRevLett.87.037203 11461587 

  25. 25. Boulle O Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures Nat. Nanotechnol. 2016 11 449 455 10.1038/nnano.2015.315 26809057 

  26. 26. Pollard SD Observation of stable Néel skyrmions in Co/Pd multilayers with Lorentz transmission electron microscopy Nat. Commun. 2017 8 14761 10.1038/ncomms14761 28281542 

  27. 27. Büttner F Dynamics and inertia of skyrmionic spin structures Nat. Phys. 2015 11 225 228 10.1038/nphys3234 

  28. 28. Park HS Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography Nat. Nanotechnol. 2014 9 337 342 10.1038/nnano.2014.52 24727689 

  29. 29. Romming N Kubetzka A Hanneken C Von Bergmann K Wiesendanger R Field-Dependent Size and Shape of Single Magnetic Skyrmions Phys. Rev. Lett. 2015 114 177203 10.1103/PhysRevLett.114.177203 25978258 

  30. 30. Hou, Z. et al . Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe. Nano Lett . acs.nanolett.7b04900, 10.1021/acs.nanolett.7b04900 (2018). 

  31. 31. Yu XZ Skyrmion flow near room temperature in an ultralow current density Nat. Commun. 2012 3 988 10.1038/ncomms1990 22871807 

  32. 32. Everschor K Garst M Duine RA Rosch A Current-induced rotational torques in the skyrmion lattice phase of chiral magnets Phys. Rev. B 2011 84 064401 10.1103/PhysRevB.84.064401 

  33. 33. Iwasaki J Mochizuki M Nagaosa N Current-induced skyrmion dynamics in constricted geometries Nat. Nanotechnol. 2013 8 742 10.1038/nnano.2013.176 24013132 

  34. 34. Husain S Akansel S Kumar A Svedlindh P Chaudhary S Growth of Co 2 FeAl Heusler alloy thin films on Si(100) having very small Gilbert damping by Ion beam sputtering Sci. Rep. 2016 6 28692 10.1038/srep28692 27357004 

  35. 35. Zhou Y Dynamically stabilized magnetic skyrmions Nat. Commun. 2015 6 8193 10.1038/ncomms9193 26351104 

  36. 36. Emori S Bauer U Ahn S-M Martinez E Beach GSD Current-driven dynamics of chiral ferromagnetic domain walls Nat. Mater. 2013 12 611 6 10.1038/nmat3675 23770726 

  37. 37. Cho J Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems Nat. Commun. 2015 6 7635 10.1038/ncomms8635 26154986 

  38. 38. Rohart S Thiaville A Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction Phys. Rev. B 2013 88 184422 10.1103/PhysRevB.88.184422 

  39. 39. Hrabec A Current-induced skyrmion generation and dynamics in symmetric bilayers Nat. Commun. 2017 8 15765 10.1038/ncomms15765 28593949 

  40. 40. Gallagher JC Robust Zero-Field Skyrmion Formation in FeGe Epitaxial Thin Films Phys. Rev. Lett. 2017 118 0207201 10.1103/PhysRevLett.118.027201 

  41. 41. Li J Tailoring the topology of an artificial magnetic skyrmion Nat. Commun. 2014 5 4704 10.1038/ncomms5704 25134845 

  42. 42. Gilbert DA Realization of ground-state artificial skyrmion lattices at room temperature Nat. Commun. 2015 6 8462 10.1038/ncomms9462 26446515 

  43. 43. Karthik SV Rajanikanth A Takahashi YK Okhubo T Hono K Spin polarization of quaternary Co2Cr1-xFexAl Heusler alloys Appl. Phys. Lett. 2006 89 052505 10.1063/1.2245224 

  44. 44. Husain S Spin pumping in ion-beam sputtered Co 2 FeAl/Mo bilayers: Interfacial Gilbert damping Phys. Rev. B 2018 97 064420 10.1103/PhysRevB.97.064420 

  45. 45. Akansel S Thickness-dependent enhancement of damping in Co 2 FeAl/β-Ta thin films Phys. Rev. B 2018 97 134421 10.1103/PhysRevB.97.134421 

  46. 46. Milde P Unwinding of a Skyrmion Lattice by Magnetic Monopoles Science 2013 340 1076 1080 10.1126/science.1234657 23723232 

  47. 47. Yagil, A. et al . Stray field signatures of Néel-textured skyrmions in Ir/Fe/Co/Pt multilayer films. arXiv:1705 . 07608v1 (2017). 

  48. 48. Legrand W Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions Nano Lett. 2017 17 2703 2712 10.1021/acs.nanolett.7b00649 28358984 

  49. 49. Berganza, E. et al . Observation of hedgehog skyrmions in sub-100 nm soft magnetic nanodots. arXiv:1803 . 08768 (2018). 

  50. 50. Alford, T. L., Feldman, L. C. & Mayer, J. W. Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis . (Springer US, 10.1007/978-0-387-29261-8 2007). 

  51. 51. Kim S Contributions of Co and Fe orbitals to perpendicular magnetic anisotropy of MgO/CoFeB bilayers with Ta, W, IrMn, and Ti underlayers Appl. Phys. Express 2017 10 073006 10.7567/APEX.10.073006 

  52. 52. Radaelli G Electric control of magnetism at the Fe/BaTiO 3 interface Nat. Commun. 2014 5 3404 10.1038/ncomms4404 24584546 

  53. 53. Ebke D X-Ray Absorption and Magnetic Circular Dichroism Studies of Co 2 FeAl in Magnetic Tunnel Junctions IEEE Trans. Magn. 2010 46 1925 1928 10.1109/TMAG.2010.2041049 

  54. 54. Miedema PS De Groot FMF The iron L edges: Fe2p X-ray absorption and electron energy loss spectroscopy J. Electron Spectros. Relat. Phenomena 2013 187 32 48 10.1016/j.elspec.2013.03.005 

  55. 55. Rehr JJ Albers RC Theoretical approaches to x-ray absorption fine structure Rev. Mod. Phys. 2000 72 621 654 10.1103/RevModPhys.72.621 

  56. 56. Rehr JJ Ab initio theory and calculations of X-ray spectra Comptes Rendus Phys. 2009 10 548 559 10.1016/j.crhy.2008.08.004 

  57. 57. Luches P X-ray absorption study at the Mg and O K edges of ultrathin MgO epilayers on Ag(001) Phys. Rev. B 2004 69 045412 10.1103/PhysRevB.69.045412 

  58. 58. Tougerti, A. et al . Surface Science Approach to the Solid-Liquid Interface: Surface-Dependent Precipitation of Ni(OH) 2 on α-Al 2 O 3 Surfaces. Angew . Chemie Int . Ed . 51 , 7697–7701 (2012). 

  59. 59. Bunker, G. INTRODUCTION TO XAFS A Practical Guide to X-ray Absorption Fine Structure Spectroscopy . (Cambridge University Press, New York, 2010). 

  60. 60. Balke B Structural characterization of the Co 2 FeZ (Z = Al, Si, Ga, and Ge) Heusler compounds by x-ray diffraction and extended x-ray absorption fine structure spectroscopy Appl. Phys. Lett. 2007 90 172501 10.1063/1.2731314 

  61. 61. Bainsla L Local structure studies of CoFeMn X (X = Si and Ge) Heusler alloys using X-ray absorption spectroscopy J. Alloys Compd. 2015 651 509 513 10.1016/j.jallcom.2015.08.131 

  62. 62. Nembach HT Shaw JM Weiler M Jué E Silva TJ Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films Nat. Phys. 2015 11 825 829 10.1038/nphys3418 

  63. 63. Damon RW Eshbach JR Magnetostatic modes of a ferromagnet slab J. Phys. Chem. Solids 1961 19 308 320 10.1016/0022-3697(61)90041-5 

  64. 64. Belmeguenai M Brillouin light scattering investigation of the thickness dependence of Dzyaloshinskii-Moriya interaction in CoFe ultrathin films Phys. Rev. B 2016 93 174407 10.1103/PhysRevB.93.174407 

  65. 65. Soumyanarayanan A Tunable Room Temperature Magnetic Skyrmions in Ir/Fe/Co/Pt Multilayers Nat. Mater. 2016 16 898 904 10.1038/nmat4934 

  66. 66. Zhu, X. & Grütter, P. I maging, Manipulation, and Spectroscopic Measurements of Nanomagnets by Magnetic Force Microscopy. MRS Bull . 457–462 (2004). 

  67. 67. Shinjo T Magnetic Vortex Core Observation in Circular Dots of Permalloy Science 2000 289 930 932 10.1126/science.289.5481.930 10937991 

  68. 68. Ho, P. et al . Sub-100 nm Skyrmions at Zero Magnetic Field in Ir/Fe/Co/Pt Nanostructures. arXiv Prepr . arXiv1709 . 04878v1 (2017). 

  69. 69. Vansteenkiste A The design and verification of MuMax3 AIP Adv. 2014 4 107133 10.1063/1.4899186 

  70. 70. Belmeguenai M Co 2 FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect J. Appl. Phys. 2014 115 043918 10.1063/1.4863398 

  71. 71. Yu X From the Cover: Magnetic stripes and skyrmions with helicity reversals Proc. Natl. Acad. Sci. 2012 109 8856 8860 10.1073/pnas.1118496109 22615354 

  72. 72. Zhao X Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks Proc. Natl. Acad. Sci. 2016 113 4918 4923 10.1073/pnas.1600197113 27051067 

  73. 73. Rózsa L Skyrmions with attractive interactions in an ultrathin magnetic film Phys. Rev. Lett. 2016 117 157205 10.1103/PhysRevLett.117.157205 27768339 

  74. 74. Müller J Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu 2 OSe 3 Phys. Rev. Lett. 2017 119 137201 10.1103/PhysRevLett.119.137201 29341720 

  75. 75. Chaurasiya AK Direct observation of interfacial Dzyaloshinskii-Moriya interaction from asymmetric spin-wave propagation in W/CoFeB/SiO 2 heterostructures down to sub-nanometer CoFeB thickness Sci. Rep. 2016 6 32592 10.1038/srep32592 27586260 

  76. 76. Lee I-J Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source Rev. Sci. Instrum. 2010 81 026103 10.1063/1.3298581 20192520 

  77. 77. Lee T Oh S The Pohang light source project: Status report Rev. Sci. Instrum. 1992 63 1567 10.1063/1.1143022 

  78. 78. Ravel B Newville M ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT J. Synchrotron Radiat. 2005 12 537 541 10.1107/S0909049505012719 15968136 

  79. 79. Singh JP Magnetic, electronic structure and interface study of Fe/MgO/Fe multilayer Adv. Mater. Lett. 2014 5 372 377 10.5185/amlett.2013.105560 

  80. 80. Jung N Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction NPG Asia Mater. 2016 8 e237 10.1038/am.2015.143 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로