$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications 원문보기

Materials, v.12 no.4, 2019년, pp.609 -   

Murugesan, Mohanraj ,  Jung, Dong Won

Abstract AI-Helper 아이콘AI-Helper

Consistent and reasonable characterization of the material behavior under the coupled effects of strain, strain rate and temperature on the material flow stress is remarkably crucial in order to design as well as optimize the process parameters in the metal forming industrial practice. The objective...

주제어

참고문헌 (29)

  1. 1. He J. Chen F. Wang B. Zhu L.B. A modified Johnson-Cook model for 10% Cr steel at elevated temperatures and a wide range of strain rates Mater. Sci. Eng. A 2018 715 1 9 10.1016/j.msea.2017.10.037 

  2. 2. Shrot A. Bäker M. Determination of Johnson–Cook parameters from machining simulations Comput. Mater. Sci. 2012 52 298 304 10.1016/j.commatsci.2011.07.035 

  3. 3. Gambirasio L. Rizzi E. On the calibration strategies of the Johnson-Cook strength model: Discussion and applications to experimental data Mater. Sci. Eng. A 2015 610 220 228 10.1016/j.msea.2014.05.006 

  4. 4. Gambirasio L. Rizzi E. An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow Comput. Mater. Sci. 2016 113 231 265 10.1016/j.commatsci.2015.11.034 

  5. 5. Bobbili R. Ramakrishna B. Madhu V. Gogia A.K. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures Def. Technol. 2015 11 93 98 10.1016/j.dt.2014.08.004 

  6. 6. Milani A.S. Dabboussi W. Nemes J.A. Abeyaratne R.C. An improved multi-objective identification of Johnson–Cook material parameters Int. J. Impact Eng. 2009 36 294 302 10.1016/j.ijimpeng.2008.02.003 

  7. 7. Majzoobia G.H. Dehgolan F.R. Determination of the constants of damage models Procedia Eng. 2011 10 764 773 10.1016/j.proeng.2011.04.127 

  8. 8. Banerjee A. Dhar S. Acharyya S. Datta D. Nayak N. Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel Mater. Sci. Eng. A 2015 640 200 209 10.1016/j.msea.2015.05.073 

  9. 9. Buzyurkina A.E. Gladkyb I.L. Krausa E.I. Determination and verification of Johnson-Cook model parameters athigh-speed deformation of titanium alloys Aerosp. Sci. Technol. 2015 45 121 127 10.1016/j.ast.2015.05.001 

  10. 10. Zhang X. Wu S. Wang H. Liu C.R. Predicting the Effects of Cutting Parameters and Tool Geometry on Hard Turning Process Using Finite Element Method J. Manuf. Sci. Eng. 2011 133 10.1115/1.4004611 

  11. 11. Liu J. Bai Y. Xu C. Evaluation of Ductile Fracture Models in Finite Element Simulation of Metal Cutting Processes J. Manuf. Sci. Eng. 2014 136 10.1115/1.4025625 

  12. 12. Abbasi-Bani A. Zarei-Hanzaki A. Pishbin M.H. Haghdadi N. A comparative study on the capability of Johnson-Cook and Arrhenius-type constitutive equations to describe the flow behavior of Mg-6Al-1Zn alloy Mech. Mater. 2014 71 52 61 10.1016/j.mechmat.2013.12.001 

  13. 13. He A. Xie G. Zhang H. Wang X. A comparative study on Johnson–Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel Mater. Des. 2013 52 677 685 10.1016/j.matdes.2013.06.010 

  14. 14. Maheshwari A.K. Prediction of flow stress for hot deformation processing Comput. Mater. Sci. 2013 69 350 358 10.1016/j.commatsci.2012.11.054 

  15. 15. Akbari Z. Mirzadeh H. Cabrera J.M. A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation Mater. Des. 2015 77 126 131 10.1016/j.matdes.2015.04.005 

  16. 16. Zhan H. Wang G. Kent D. Dargusch M. Constitutive modelling of the flow behaviour of a beta titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models Mater. Sci. Eng. A 2014 612 71 79 10.1016/j.msea.2014.06.030 

  17. 17. Samantaray D. Mandal S. Bhaduri A.K. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel Comput. Mater. Sci. 2009 47 568 576 10.1016/j.commatsci.2009.09.025 

  18. 18. Cao Y. Di H.S. Misra R.D.K. Zhang J. Hot Deformation Behavior of Alloy 800 H at Intermediate Temperatures: Constitutive Models and Microstructure Analysis J. Mater. Eng. Perform. 2014 23 4298 4308 10.1007/s11665-014-1220-4 

  19. 19. Murugesan M. Lee S. Kim D. Kang Y.H. Kim N. A Comparative Study of Ductile Damage Models Approaches for Joint Strength Prediction in Hot Shear Joining Process Procedia Eng. 2017 207 1689 1694 10.1016/j.proeng.2017.10.923 

  20. 20. Zhanga Y. Outeirob J.C. Mabroukic T. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting Proceedings of the 15th CIRP Conference on Modelling of Machining Operations Karlsruhe, Germany 11–12 June 2015 112 117 

  21. 21. Bai Y. Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence Int. J. Plast. 2008 24 1071 1096 10.1016/j.ijplas.2007.09.004 

  22. 22. Brunig M. Chyra O. Albrecht D. Driemeier L. Alves M. A ductile damage criterion at various stress triaxialities Int. J. Plast. 2008 24 1731 1755 10.1016/j.ijplas.2007.12.001 

  23. 23. Mirone G. Corallo D. A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening Int. J. Plast. 2010 26 348 371 10.1016/j.ijplas.2009.07.006 

  24. 24. Cao T.S. Gachet J.M. Montmitonnet P. Bouchard P.O. A Lode-dependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality Eng. Fract. Mech. 2014 124–125 80 96 10.1016/j.engfracmech.2014.03.021 

  25. 25. Bao Y. Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios Eng. Fract. Mech. 2005 72 505 522 10.1016/j.engfracmech.2004.04.012 

  26. 26. Bao Y. Prediciton of Ductile Crack Formation in Uncracked Bodies Ph.D. Thesis Massachusetts Institute of Technology Cambridge, MA, USA 2003 

  27. 27. Bridgman P.W. Studies in Large Plastic Flow and Fracture McGraw-Hill Book Company, Inc. New York, NY, USA 1952 

  28. 28. Lee K. Murugesan M. Lee S.M. Kang B.S. A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods Trans. Mater. Process. 2017 26 18 27 10.5228/KSTP.2017.26.1.18 

  29. 29. Murugesan M. Kang B.S. Lee K. Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology J. Compos. Res. 2015 28 297 310 10.7234/composres.2015.28.5.297 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로