최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.10 no.1, 2019년, pp.961 -
Wat, Amy (Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 USA) , Lee, Je In (Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea) , Ryu, Chae Woo (Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea) , Gludovatz, Bernd (School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW 2052 Australia) , Kim, Jinyeon (Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea) , Tomsia, Antoni P. (Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA) , Ishikawa, Takehiko (Japan Aerospace Explanation Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 Japan) , Schmitz, Julianna (Institut fü) , Meyer, Andreas (r Materialphysik im Weltraum, DLR, Kö) , Alfreider, Markus (ln, 51170 Germany) , Kiener, Daniel (Institut fü) , Park, Eun Soo (r Materialphysik im Weltraum, DLR, Kö) , Ritchie, Robert O. (ln, 51170 Germany)
Bioinspired ceramics with micron-scale ceramic “bricks” bonded by a metallic “mortar” are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressure...
1. Wegst UGK Bai H Saiz E Tomsia AP Ritchie RO Bioinspired structural materials Nat. Mater. 2015 14 23 36 10.1038/nmat4089 25344782
2. Meyers MA Chen PY Lin AYM Seki Y Biological materials: structure and mechanical properties Prog. Mater. Sci. 2008 53 1 206 10.1016/j.pmatsci.2007.05.002
3. Liu Z Meyers MA Zhang Z Ritchie RO Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications Prog. Mater. Sci. 2017 88 467 498 10.1016/j.pmatsci.2017.04.013
4. Shao Y Zhao HP Feng XQ Gao H Discontinuous crack-bridging model for fracture toughness analysis of nacre J. Mech. Phys. Solids 2012 60 1400 1419 10.1016/j.jmps.2012.04.011
5. Sarikaya M Gunnison KE Yasrebi M Aksay IA Mechanical property-microstructural relationships in abalone shell. MRS Online Proc Symp. R. –Materials Synth. Util. Biol. Process. 1989 174 109
6. Launey ME Ritchie RO On the fracture toughness of advanced materials Adv. Mater. 2009 21 2103 2110 10.1002/adma.200803322
7. Song F Soh AK Bai YL Structural and mechanical properties of the organic matrix layers of nacre Biomaterials 2003 24 3623 3631 10.1016/S0142-9612(03)00215-1 12809793
8. Begley MR Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites J. Mech. Phys. Solids 2012 60 1545 1560 10.1016/j.jmps.2012.03.002
9. Barthelat F Designing nacre-like materials for simultaneous stiffness, strength and toughness: optimum materials, composition, microstructure and size J. Mech. Phys. Solids 2014 73 22 37 10.1016/j.jmps.2014.08.008
10. Espinosa HD Rim JE Barthelat F Buehler MJ Merger of structure and material in nacre and bone – perspectives on de novo biomimetic materials Prog. Mater. Sci. 2009 54 1059 1100 10.1016/j.pmatsci.2009.05.001
11. Munch E Tough, bio-inspired hybrid materials Science 2008 322 1516 1520 10.1126/science.1164865 19056979
12. Bouville F Strong, tough and stiff bioinspired ceramics from brittle constituents Nat. Mater. 2014 13 508 514 10.1038/nmat3915 24658117
13. Launey ME Designing highly toughened hybrid composites through nature-inspired hierarchical complexity Acta Mater. 2009 57 2919 2932 10.1016/j.actamat.2009.03.003
14. Rempel A Worster M The interaction between a particle and an advancing solidification front J. Cryst. Growth 1999 205 427 440 10.1016/S0022-0248(99)00290-0
15. Naglieri V Bale HA Gludovatz B Tomsia AP Ritchie RO On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials Acta Mater. 2013 61 6948 6957 10.1016/j.actamat.2013.08.006
16. Deville S Saiz E Nalla RK Tomsia AP Freezing as a path to build complex composites Science 2006 311 515 518 10.1126/science.1120937 16439659
17. Deville S Freeze-casting of porous ceramics: a review of current achievements and issues Adv. Eng. Mater. 2008 10 155 169 10.1002/adem.200700270
18. Bai H Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method Adv. Mater. 2015 28 50 56 10.1002/adma.201504313 26554760
19. Fukasawa T Deng ZY Ando M Ohji T Goto Y Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process J. Mater. Sci. 2001 36 2523 2527 10.1023/A:1017946518955
20. Fukasawa T Ando M Ohji T Kanzaki S Synthesis of porous ceramics with complex pore structure by freeze-dry processing J. Am. Ceram. Soc. 2001 84 230 232 10.1111/j.1151-2916.2001.tb00638.x
21. Cheng Q Huang C Tomsia AP Freeze casting for assembling bioinspired structural materials Adv. Mater. 2017 29 1703155 10.1002/adma.201703155
22. Corni I A review of experimental techniques to produce a nacre-like structure Bioinspir. Biomim. 2012 7 031001 031001 10.1088/1748-3182/7/3/031001 22535879
23. Zhao H Guo L Nacre-inspired structural composites: performance-enhancement strategy and perspective Adv. Mater. 2017 29 1702903 10.1002/adma.201702903
24. Wilkerson RP A novel approach to developing biomimetic (“nacre-like”) metal-compliant-phase (nickel–alumina) ceramics through coextrusion Adv. Mater. 2016 28 10061 10067 10.1002/adma.201602471 27690374
25. Wilkerson RP A study of size effects in bioinspired, “nacre-like”, metal-compliant-phase (nickel-alumina) coextruded ceramics Acta Mater. 2018 148 147 155 10.1016/j.actamat.2018.01.046
26. Wilkerson RP High-temperature damage-tolerance of coextruded, bioinspired (“nacre-like”), alumina/nickel compliant-phase ceramics Scr. Mater. 2019 158 110 115 10.1016/j.scriptamat.2018.08.046
27. Xu Z Bioinspired nacre-like ceramic with nickel inclusions fabricated by electroless plating and spark plasma sintering Adv. Eng. Mater. 2018 20 1700782 10.1002/adem.201700782
28. Ferraro C Strong and tough metal/ceramic micro-laminates Acta Mater. 2018 144 202 215 10.1016/j.actamat.2017.10.059
29. Lloyd DJ Particle reinforced aluminium and magnesium matrix composites Int. Mater. Rev. 1994 39 1 23 10.1179/imr.1994.39.1.1
30. Launey ME A novel biomimetic approach to the design of high-performance ceramic–metal composites J. Roy. Soc. Interface 2010 7 741 753 10.1098/rsif.2009.0331 19828498
31. Roy S Wanner A Metal/ceramic composites from freeze-cast ceramic preforms: domain structure and elastic properties Recent Adv. Exp. Appl. Res. Compos. Mater. 2008 68 1136 1143
32. Wang Y Shen P Guo RF Hu ZJ Jiang QC Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration Ceram. Int. 2017 43 3831 3838 10.1016/j.ceramint.2016.12.038
33. Garcia-Cordovilla C Louis E Narciso J Pressure infiltration of packed ceramic particulates by liquid metals Acta Mater. 1999 47 4461 4479 10.1016/S1359-6454(99)00318-3
34. Mattern A Preparation of interpenetrating ceramic–metal composites Eng. Ceram. 2003 2004 24 3399 3408
35. Guo RF Lv HC Shen P Hu ZJ Jiang QC Lamellar-interpenetrated Al−Si−Mg/Al 2 O 3 −ZrO 2 composites prepared by freeze casting and pressureless infiltration Ceram. Int. 2017 43 3292 3297 10.1016/j.ceramint.2016.11.162
36. Shaga A Shen P Guo RF Jiang QC Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al–Si–Mg/SiC composites prepared by freeze casting and pressureless infiltration Ceram. Int. 2016 42 9653 9659 10.1016/j.ceramint.2016.03.052
37. Zhang H Shen P Shaga A Guo R Jiang Q Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template Mater. Lett. 2016 183 299 302 10.1016/j.matlet.2016.07.126
38. Schroers J Samwer K Szuecs F Johnson WL Characterization of the interface between the bulk glass forming alloy Zr 41 Ti 14 Cu 12 Ni 10 Be 23 with pure metals and ceramics J. Mater. Res. 2011 15 1617 1621 10.1557/JMR.2000.0232
39. Shen P Zheng XH Lin QL Zhang D Jiang QC Wetting of polycrystalline α-Al 2 O 3 by molten Zr 55 Cu 30 Al 10 Ni 5 metallic glass alloy Metall. Mater. Trans. A 2009 40 444 449 10.1007/s11661-008-9718-8
40. Kai W Air oxidation of a Zr 58 Cu 22 Al 12 Fe 8 bulk metallic glass at 350–550°C J. Alloy. Compd. 2009 483 519 525 10.1016/j.jallcom.2008.10.133
41. Löffler JF Bulk metallic glasses Intermetallics 2003 11 529 540 10.1016/S0966-9795(03)00046-3
42. Dandliker RB Conner RD Johnson WL Melt infiltration casting of bulk metallic-glass matrix composites J. Mater. Res. 1998 13 2896 2901 10.1557/JMR.1998.0396
43. Choi-Yim H Schroers J Johnson WL Microstructures and mechanical properties of tungsten wire/particle reinforced Zr 57 Nb 5 Al 10 Cu 15.4 Ni 12.6 metallic glass matrix composites Appl. Phys. Lett. 2002 80 1906 1908 10.1063/1.1459766
44. Travitzky N Processing of ceramic-metal composites Adv. Appl. Ceram. 2012 111 286 300 10.1179/1743676111Y.0000000073
45. Locatelli MR Tomsia AP Nakashima K Dalgleish BJ Glaeser AM New strategies for joining ceramics for high-temperature applications Key Eng. Mater. 1995 111 157 190 10.4028/www.scientific.net/KEM.111-112.157
46. Mauro NA Blodgett M Johnson ML Vogt AJ Kelton KF A structural signature of liquid fragility Nat. Commun. 2014 5 4616 10.1038/ncomms5616 25098937
47. Wadhwa P Heinrich J Busch R Processing of copper fiber-reinforced Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 bulk metallic glass composites Scr. Mater. 2007 56 73 76 10.1016/j.scriptamat.2006.08.053
48. Lee JI Kim SY Park ES In-situ synthesis and mechanical properties of Zr-based bulk metallic glass matrix composites manipulated by nitrogen additions Intermetallics 2017 91 70 77 10.1016/j.intermet.2017.08.005
49. ASTM E1820-16: Standard Test Method for Measurement of Fracture Toughness (ASTM International, 2016).
50. Saiz E Cannon RM Tomsia AP Reactive spreading: adsorption, ridging and compound formation Acta Mater. 2000 48 4449 4462 10.1016/S1359-6454(00)00231-7
51. Ryu CW Kang DH Jeon S Lee GW Park ES Accurate quantification of glass-forming ability by measuring effective volume relaxation of supercooled melt APL Mater. 2017 5 106103 10.1063/1.4999357
52. Hofmann DC Designing metallic glass matrix composites with high toughness and tensile ductility Nature 2008 451 1085 1089 10.1038/nature06598 18305540
53. Schroers J Johnson WL Ductile bulk metallic glass Phys. Rev. Lett. 2004 93 255506 10.1103/PhysRevLett.93.255506 15697909
54. Lou HB 73 mm-diameter bulk metallic glass rod by copper mould casting Appl. Phys. Lett. 2011 99 051910 10.1063/1.3621862
55. Ishikawa T Paradis PF Yoda S Noncontact surface tension and viscosity measurements of rhenium in the liquid and undercooled states Appl. Phys. Lett. 2004 85 5866 5868 10.1063/1.1836002
56. Schmitz J Brillo J Egry I Surface tension of liquid Cu and anisotropy of its wetting of sapphire J. Mater. Sci. 2010 45 2144 2149 10.1007/s10853-010-4212-2
58. ASTM D790-15: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (ASTM International, 2017).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.