$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Assessing the Performance of CMIP5 GCMs for Projection of Future Temperature Change over the Lower Mekong Basin 원문보기

Atmosphere, v.10 no.2, 2019년, pp.93 -   

Ruan, Yunfeng (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China) ,  Liu, Zhaofei (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China) ,  Wang, Rui (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China) ,  Yao, Zhijun (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract AI-Helper 아이콘AI-Helper

In this study, we assessed the performance of 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) general climate models (GCMs) for simulating the observed temperature over the Lower Mekong Basin (LMB) in 1961-2004. An improved score-based method was used to rank the performance of the GCMs ove...

참고문헌 (52)

  1. IPCC (2009). Climate Change 2013-The Physical Science Basis by Intergovernmental Panel on Climate Change, Cambridge University Press (CUP). 

  2. Eastham, J., Mpelasoka, F., Mainuddin, M., Ticehurst, C., Dyce, P., Hodgson, G., Ali, R., and Kirby, M. (2008). Mekong River Basin Water Resources Assessment: Impacts of Climate Change, CSIRO. Water for a Healthy Country National Research Flagship Report. 

  3. Qin Latest advances in climate change sciences: Interpretation of the synthesis report of the IPCC fourth assessment report Adv. Climate. Change. Res. 2007 3 311 

  4. Rupp Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA J. Geophys. Res. Atmos. 2013 10.1002/jgrd.50843 118 10884 

  5. Miao Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia Environ. Res. Lett. 2014 10.1088/1748-9326/9/5/055007 9 055007 

  6. Ahmadalipour Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis Theor. Appl. Climatol. 2015 10.1007/s00704-015-1695-4 128 71 

  7. Dong Future temperature changes over the critical Belt and Road region based on CMIP5 models Adv. Climate Change Res. 2018 10.1016/j.accre.2018.01.003 9 57 

  8. Das Use of observed temperature statistics in ranking CMIP5 model performance over the Western Himalayan Region of India Int. J. Climatol. 2017 10.1002/joc.5193 38 554 

  9. Sun Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China J. Geophys. Res. Atmos. 2015 10.1002/2014JD022994 120 4806 

  10. Koutroulis Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments Clim. Dyn. 2015 10.1007/s00382-015-2938-x 47 1881 

  11. Guo Surface Air Temperature Simulations over China with CMIP5 and CMIP3 Adv. Climate Change Res. 2013 10.3724/SP.J.1248.2013.145 4 145 

  12. Sonali Intercomparison of CMIP5 and CMIP3 simulations of the 20th century maximum and minimum temperatures over India and detection of climatic trends Meteorol. Atmos. Phys. 2016 128 465 

  13. Lee Boreal winter low-frequency variability in CMIP5 models J. Geophys. Res. Atmos. 2013 10.1002/jgrd.50493 118 6891 

  14. Ning NAO and PNA influences on winter temperature and precipitation over the eastern United States in CMIP5 GCMs Clim. Dyn. 2015 10.1007/s00382-015-2643-9 46 1257 

  15. 10.1007/s00382-018-4196-1 Wang, X., Chen, M., Wang, C., Yeh, S.-W., and Tan, W. (2018). Evaluation of performance of CMIP5 models in simulating the North Pacific Oscillation and El Niño Modoki. Clim. Dyn., 1-12. 

  16. Hawkins The Potential to Narrow Uncertainty in Regional Climate Predictions Bull. Amer. Meteor. Soc. 2009 10.1175/2009BAMS2607.1 90 1095 

  17. Bannister An Assessment of Recent and Future Temperature Change over the Sichuan Basin, China, Using CMIP5 Climate Models J. Clim. 2017 10.1175/JCLI-D-16-0536.1 30 6701 

  18. Abbasian, M., Moghim, S., and Abrishamchi, A. (2018). Performance of the general circulation models in simulating temperature and precipitation over Iran. Meteorol. Atmos. Phys., 1-19. 

  19. Robock Use of general circulation model output in the creation of climate change scenarios for impact analysis Climatic Change 1993 10.1007/BF01091621 23 293 

  20. Risbey A Case Study of the Adequacy of GCM Simulations for Input to Regional Climate Change Assessments J. Clim. 1996 10.1175/1520-0442(1996)009<1441:ACSOTA>2.0.CO;2 9 1441 

  21. Xu Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century Quat. Int. 2009 10.1016/j.quaint.2008.12.020 208 44 

  22. Luo Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: How climate change reacts in Xinjiang, China Int. J. Climatol. 2018 10.1002/joc.5425 38 2538 

  23. Fan Review on creating future climate change scenarios by statistical downscaling techniques Adv. Earth. Sci. 2008 20 320 

  24. Choi Simulating streamflow response to climate scenarios in central Canada using a simple statistical downscaling method Clim. Res. 2009 10.3354/cr00826 40 89 

  25. Liu Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model Quat. Int. 2011 10.1016/j.quaint.2010.12.001 244 211 

  26. Horton Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City J. Appl. Meteor. Climatol. 2011 10.1175/2011JAMC2521.1 50 2247 

  27. Rahimi Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran Theor. Appl. Climatol. 2012 10.1007/s00704-012-0741-8 112 409 

  28. 10.1371/journal.pone.0156720 Wang, T., Hamann, A., Spittlehouse, D., and Carroll, C. (2016). Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE, 11. 

  29. Walsh Downscaling of climate model output for Alaskan stakeholders Environ. Model. Software 2018 10.1016/j.envsoft.2018.03.021 110 38 

  30. Trisurat Basin-wide impacts of climate change on ecosystem services in the Lower Mekong Basin Ecol. Res. 2017 10.1007/s11284-017-1510-z 33 73 

  31. Mekong River Commission, and ICEM (2015). MRC: Vulnerability Report Volume 2: Basin-Wide Climate Change Impact and Vulnerability Assessment for Wetland Dependent Livelihoods and Eco-Services, ICEM. 

  32. Hoanh, C.T., Jirayoot, K., Lacombe, G., and Srinetr, V. (2010). Impacts of Climate Change and Development on Mekong Flow Regimes. First Assessment-2009, International Water Management Institute. 

  33. Yoshimura 2020s scenario analysis of nutrient load in the Mekong River Basin using a distributed hydrological model Sci. Total Environ. 2009 10.1016/j.scitotenv.2009.06.026 407 5356 

  34. Kingston Uncertainty in climate change projections of discharge for the Mekong River Basin Hydrol. Earth Syst. Sci. 2011 10.5194/hess-15-1459-2011 15 1459 

  35. Huang Multi-model ensemble simulation and projection in the climate change in the Mekong River Basin. Part I: Temperature Environ. Monit. Assess. 2014 10.1007/s10661-014-3944-x 186 7513 

  36. Taylor An Overview of CMIP5 and the Experiment Design Bull. Amer. Meteor. Soc. 2012 10.1175/BAMS-D-11-00094.1 93 485 

  37. Yasutomi Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation Global. Environ. Res. 2011 15 165 

  38. Lutz, A., Terink, W., Droogers, P., Immerzeel, W., and Piman, T. (2014). Development of Baseline Climate Data Set and Trend Analysis in the Mekong Basin, Mekong River Commission. 

  39. Fu A score-based method for assessing the performance of GCMs: A case study of southeastern Australia J. Geophys. Res. Atmos. 2013 10.1002/jgrd.50269 118 4154 

  40. Liu Air temperature and precipitation over the Mongolian Plateau and assessment of CMIP5 climate models Resour. Sci. 2016 38 956 

  41. Mann Nonparametric tests against trend Econometrica 1945 10.2307/1907187 13 245 

  42. Kendall, M.G. (1975). Rank Correlation Methods, Charles Griffin. [4th ed.]. 

  43. Hirsch Selection of methods for the detection and estimation of trends in water quality Water Resour. Res. 1991 10.1029/91WR00259 27 803 

  44. Sen Estimates of the regression coefficient based on Kendall’s tau J. Am. Stat. Assoc. 1968 10.1080/01621459.1968.10480934 63 1379 

  45. Hirsch Techniques of trend analysis for monthly water quality data Water Resour. Res. 1982 10.1029/WR018i001p00107 18 107 

  46. Perkins Evaluation of the AR4 Climate Models’ Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions J. Clim. 2007 10.1175/JCLI4253.1 20 4356 

  47. Hu Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau Chin. J. Atmosph. Sci. 2014 38 924 

  48. Zazulie Regional climate of the subtropical central Andes using high-resolution CMIP5 models-Part I: Past performance (1980-2005) Clim. Dyn. 2017 10.1007/s00382-017-3560-x 49 3937 

  49. Kumar Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation Clim. Dyn. 2014 10.1007/s00382-014-2070-3 43 2491 

  50. Venkataraman 21st century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management J. Hydrol. 2016 10.1016/j.jhydrol.2016.01.001 534 300 

  51. Ahmadalipour Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin Clim. Dyn. 2017 10.1007/s00382-017-3639-4 50 717 

  52. Wang Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble Stoch. Environ. Res. Risk Assess. 2016 10.1007/s00477-016-1286-7 31 1077 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로