$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Accelerating Biologics Manufacturing by Modeling or: Is Approval under the QbD and PAT Approaches Demanded by Authorities Acceptable without a Digital-Twin? 원문보기

Processes, v.7 no.2, 2019년, pp.94 -   

Zobel-Roos, Steffen (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany) ,  Schmidt, Axel (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany) ,  Mestmäcker, Fabian (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany) ,  Mouellef, Mourad (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany) ,  Huter, Maximilian (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany) ,  Uhlenbrock, Lukas (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany) ,  Kornecki, Martin (Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerf) ,  Lohmann, Lara ,  Ditz, Reinhard ,  Strube, Jochen

Abstract AI-Helper 아이콘AI-Helper

Innovative biologics, including cell therapeutics, virus-like particles, exosomes, recombinant proteins, and peptides, seem likely to substitute monoclonal antibodies as the main therapeutic entities in manufacturing over the next decades. This molecular variety causes a growing need for a general c...

참고문헌 (143)

  1. Shukla Recent advances in large-scale production of monoclonal antibodies and related proteins Trends Biotechnol. 2010 10.1016/j.tibtech.2010.02.001 28 253 

  2. Jain Upstream processes in antibody production: evaluation of critical parameters Biotechnol. Adv. 2008 10.1016/j.biotechadv.2007.09.004 26 46 

  3. Gagnon Technology trends in antibody purification J. Chromatogr. A 2012 10.1016/j.chroma.2011.10.034 1221 57 

  4. Elvin Therapeutic antibodies: market considerations, disease targets and bioprocessing Int. J. Pharm. 2013 10.1016/j.ijpharm.2011.12.039 440 83 

  5. Li Cell culture processes for monoclonal antibody production mAbs 2010 10.4161/mabs.2.5.12720 2 466 

  6. Gronemeyer Trends in Upstream and Downstream Process Development for Antibody Manufacturing Bioengineering 2014 10.3390/bioengineering1040188 1 188 

  7. 10.1002/9783527673681 Subramanian, G. (2015). Continuous Processing in Pharmaceutical Manufacturing, WILEY-VCH. 

  8. Liu Recovery and purification process development for monoclonal antibody production mAbs 2010 10.4161/mabs.2.5.12645 2 480 

  9. Birch Antibody production Adv. Drug Delivery Rev. 2006 10.1016/j.addr.2005.12.006 58 671 

  10. 10.1002/9783527699902 Subramanian, G. (2017). Engineering Challenges of Continuous Biomanufacturing Processes (CBP). Continuous Biomanufacturing: Innovative Technologies and Methods, WILEY-VCH. 

  11. 10.1002/9783527699902 Subramanian, G. (2017). Continuous Chromatography as a Fully Integrated Process in Continuous Biomanufacturing. Continuous Biomanufacturing: Innovative Technologies and Methods, WILEY-VCH. 

  12. 10.1002/9783527699902 Subramanian, G. (2017). Integration of Upstream and Downstream in Continuous Biomanufacturing. Continuous Biomanufacturing: Innovative Technologies and Methods, WILEY-VCH. 

  13. Strube Process Intensification in Biologics Manufacturing Chem. Eng. Process. 2018 10.1016/j.cep.2018.09.022 133 278 

  14. Hanna Advanced therapy medicinal products: current and future perspectives J. Mark. Access Health Policy 2016 10.3402/jmahp.v4.31036 4 31036 

  15. Martins Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: Quality and safety data Stem Cell Res. Ther. 2014 10.1186/scrt398 5 9 

  16. Ramqvist Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer Expert Opin. Biol. Ther. 2007 10.1517/14712598.7.7.997 7 997 

  17. Warnock Cell culture processes for the production of viral vectors for gene therapy purposes Cytotechnology 2006 10.1007/s10616-005-5507-z 50 141 

  18. Fuenmayor Production of virus-like particles for vaccines New Biotechnol. 2017 10.1016/j.nbt.2017.07.010 39 174 

  19. Kushnir Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development Vaccine 2012 10.1016/j.vaccine.2012.10.083 31 58 

  20. Mellado Virus-like particles in vaccine development Expert Rev. Vaccines 2010 10.1586/erv.10.115 9 1149 

  21. Vicente Large-scale production and purification of VLP-based vaccines J. Invertebr. Pathol. 2011 10.1016/j.jip.2011.05.004 107 S42 

  22. Cho Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis Stem Cell Res. Ther. 2018 10.1186/s13287-018-0939-5 9 187 

  23. Ha Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges Acta Pharm. Sin. B 2016 10.1016/j.apsb.2016.02.001 6 287 

  24. Keller Exosomes: From biogenesis and secretion to biological function Immunol. Lett. 2006 10.1016/j.imlet.2006.09.005 107 102 

  25. Watson Efficient production and enhanced tumor delivery of engineered extracellular vesicles Biomaterials 2016 10.1016/j.biomaterials.2016.07.003 105 195 

  26. ICH (2018, January 17). Quality Risk Management Q9, 2005 (Step 4 Version). Available online: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf. 

  27. ICH (2018, January 17). Pharmaceutical Quality System Q10, 2008 (Step 4 Version). Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q10/Step4/Q10_Guideline.pdf. 

  28. ICH (2015, January 02). Pharmaceutical Development Q8 (R2), 2009 (Step 4 Version). Available online: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf. 

  29. ICH (2018, January 17). Development and Manufacturing of Drug Substances Q11, 2013 (Step 4 Version). Available online: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q11/Q11_Step_4.pdf. 

  30. (2018, November 17). Express-scripts.com. The Need for U.S. Biosimilars. Available online: http://lab.express-scripts.com/lab/insights/drug-options/~/link.aspx?_id=905e58d6e6494fb4ae1b2581566b3538&_z=z. 

  31. PharmTech (2018, November 03). Biosimilars and Follow-on-Biologics Market to Hit $35 Billion Globally by 2020. Available online: http://www.pharmtech.com/biosimilars-and-follow-biologics-market-hit-35-billion-globally-2020. 

  32. Epstein Biosimilars: The need, the challenge, the future: The FDA perspective Am. J. Gastroenterol. 2014 10.1038/ajg.2014.151 109 1856 

  33. JSR Life Sciences (2018, November 06). Chromassette. Available online: https://www.jsrlifesciences.com/bioprocess/chromassette. 

  34. 10.1002/9783527699902 Subramanian, G. (2017). Continuous Biomanufacturing. Innovative Technologies and Methods, WILEY-VCH. 

  35. 10.1007/s10529-018-2593-5 Schofield, M. (2018). Current state of the art in continuous bioprocessing. Biotechnol. Lett. 

  36. 10.1002/9783527699902 Subramanian, G. (2017). Two Mutually Enabling Trends: Continuous Bioprocessing and Single-Use Technologies. Continuous Biomanufacturing: Innovative Technologies and Methods, WILEY-VCH. 

  37. 10.1002/9783527699902 Subramanian, G. (2017). Single-Pass Tangential Flow Filtration (SPTFF) in Continuous Biomanufacturing. Continuous Biomanufacturing: Innovative Technologies and Methods, WILEY-VCH. 

  38. Pollock Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture Biotechnol. Prog. 2017 10.1002/btpr.2492 33 854 

  39. Karst Continuous integrated manufacturing of therapeutic proteins Curr. Opin. Biotechnol. 2018 10.1016/j.copbio.2017.12.015 53 76 

  40. Bioprozesstechnik, and Chmiel, H. (2011). 3., neu bearb. Aufl., Spektrum Akademischer Verlag. 

  41. 10.1002/0471743984.vse1089 Ladisch, M.R. (2005). Bioprocess Engineering (Biotechnology). Van Nostrand’s Scientific Encyclopedia, John Wiley & Sons, Inc. 

  42. Malphettes Macroscopic modeling of mammalian cell growth and metabolism Appl. Microbiol. Biotechnol. 2015 10.1007/s00253-015-6743-6 99 7009 

  43. Schuler, H. (1995). Prozessimulation, WILEY-VCH. 

  44. 10.1002/9783527630158 Carta, G., and Jungbauer, A. (2010). Protein Chromatography. Process Development and Scale-Up, WILEY-VCH. 

  45. Strube Prädiktive Modellierung von Trennverfahren Chem. Ing. Tech. 2012 10.1002/cite.201290051 84 867 

  46. Kroll Model-Based Methods in the Biopharmaceutical Process Lifecycle Pharm. Res. 2017 10.1007/s11095-017-2308-y 34 2596 

  47. Nfor Rational and systematic protein purification process development: The next generation Trends Biotechnol. 2009 10.1016/j.tibtech.2009.09.002 27 673 

  48. Zobel-Roos, S. (2018). Entwicklung, Modellierung und Validierung von Integrierten Kontinuierlichen Gegenstrom-Chromatographie-Prozessen, 1. Auflage, Shaker. 

  49. Strube, J. (2000). Technische Chromatographie: Auslegung, Optimierung, Betrieb und Wirtschaftlichkeit, Shaker. 

  50. Wiesel Modelling gradient elution of bioactive multicomponent systems in non-linear ion-exchange chromatography J. Chromatogr. A 2003 10.1016/S0021-9673(03)00554-5 1006 101 

  51. Thiess Module design for ultrafiltration in biotechnology: Hydraulic analysis and statistical modeling J. Membr. Sci. 2017 10.1016/j.memsci.2017.06.038 540 440 

  52. 10.3390/bioengineering5010025 Kornecki, M., and Strube, J. (2018). Process Analytical Technology for Advanced Process Control in Biologics Manufacturing with the Aid of Macroscopic Kinetic Modeling. Bioengineering, 5. 

  53. 10.3390/antib6040021 Schmidt, A., Richter, M., Rudolph, F., and Strube, J. (2017). Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies. Antibodies, 6. 

  54. 10.3390/membranes8010004 Thiess, H., Schmidt, A., and Strube, J. (2018). Development of a Scale-up Tool for Pervaporation Processes. Membranes, 8. 

  55. Bayer (2018, November 02). Open Systems Pharmacology Suite with PK-Sim and MoBi: Unmatched Flexibility-Unlimited Transparency. Available online: http://www.systems-biology.com/products/pk-sim.html. 

  56. Meyer Molecular modelling and drug design Pharmacol. Ther. 2000 10.1016/S0163-7258(99)00069-8 85 113 

  57. Duch Artificial Intelligence Approaches for Rational Drug Design and Discovery CPD 2007 10.2174/138161207780765954 13 1497 

  58. Minsky, M. (1965, January 24-29). Matter, Mind and Models. Proceedings of the IFIP Congress, New York, NY, USA. 

  59. (2004). Guidance for Industry-Sterile Drug Products Produced by Aseptic Processing-Current Good Manufacturing Practice, FDA. 

  60. (2014). Guidance for Industry CMC Postapproval Manufacturing Changes to Be Documented in Annual Reports, FDA. 

  61. (2004). Guidance for Industry Changes to an Approved NDA or ANDA, FDA. 

  62. 10.1007/978-3-319-32156-1 Hehenberger, P., and Bradley, D. (2016). 5. Digital Twin-The Simulation Aspect. Mechatronic Futures, Springer International Publishing. 

  63. Rosen About the Importance of Autonomy and Digital Twins for the Future of Manufacturing Ifac-Pap. 2015 48 567 

  64. 10.1007/978-3-662-55124-0 Eigner, M., Koch, W., and Muggeo, C. (2017). Modellbasierter Entwicklungsprozess Cybertronischer Systeme, Springer Berlin Heidelberg. 

  65. Brown, J. (2018, November 03). Siemens Digital Twin Strategy. Available online: https://tech-clarity.com/siemens-plm-twin/7017. 

  66. Galvanauskas Hybrid process models for process optimisation, monitoring and control Bioprocess Biosyst. Eng. 2004 10.1007/s00449-004-0385-x 26 393 

  67. Ji, Y. (2012). Model Based Process Design for Bioprocess Optimisation: Case Studies on Precipitation with Its Applications in Antibody Purification, University College London. 

  68. McCullagh What is a statistical model? Ann. Stat. 2002 10.1214/aos/1035844977 30 1225 

  69. Dreyfus, H.L. (1979). What Computers Can’t Do. The Limits of Artificial Intelligence, Harper & Row. 

  70. Domingos, P. (2018). The Master Algorithm. How the Quest for the Ultimate Learning Machine Will Remake Our World, First Paperback ed., Basic Books. 

  71. Nielsen Machine learning approaches for the prediction of signal peptides and other protein sorting signals Protein Eng. Des. Sel. 1999 10.1093/protein/12.1.3 12 3 

  72. CNN (2018, November 03). AI Set to Exceed Human Brain Power. Available online: http://edition.cnn.com/2006/TECH/science/07/24/ai.bostrom/. 

  73. Dreyfus, H.L. (1999). What Computers Still Can’t Do. A Critique of Artificial Reason, MIT Press. 6th print. 

  74. Bostrom, N. (2014). Superintelligence. Paths, Dangers, Strategies, Oxford University Press. [1st ed.]. 

  75. Charaniya Mining bioprocess data: Opportunities and challenges Trends Biotechnol. 2008 10.1016/j.tibtech.2008.09.003 26 690 

  76. Burghaus Einsatz von Data-Mining zur Analyse eines Polymerprozesses Chem. Ing. Tech. 2003 10.1002/cite.200303206 75 897 

  77. 10.1002/9780470567623 Balakin, K.V. (2010). Pharmaceutical Data Mining. Approaches and Applications for Drug Discovery, Wiley. 

  78. Schuppert Few inputs can reprogram biological networks Nature 2011 10.1038/nature10543 478 E4 

  79. Wolkenhauer Enabling multiscale modeling in systems medicine Genome Med. 2014 10.1186/gm538 6 21 

  80. 10.1007/978-1-4939-3283-2 Schmitz, U., and Wolkenhauer, O. (2016). Systems Medicine in Pharmaceutical Research and Development. Systems Medicine, Humana Press. [1st ed.]. 

  81. 10.1016/S1350-4789(00)90142-9 Schuppert, A. (2000). Data Mining. Bayer Res. Mag., 16. 

  82. 10.1002/9783527653096 Subramanian, G. (2012). Modeling and Experimental Model Parameter Determination with Quality by Design for Bioprocesses. Biopharmaceutical Production Technology, 1. Aufl., WILEY-VCH. 

  83. Helling Physical characterization of column chromatography: Stringent control over equipment performance in biopharmaceutical production Trends Chromatogr. 2013 2013 55 

  84. Strube, J., and Zobel-Roos, S. (2016). ITVP Training Course, DSP. Purification of Biomolecules. 

  85. Strube, J., and Ditz, R. ITVP Training Course, Process Chromatography. 

  86. Sommerfeld Challenges in biotechnology production-Generic processes and process optimization for monoclonal antibodies Chem. Eng. Process. Process Intensif. 2005 10.1016/j.cep.2005.03.006 44 1123 

  87. Jenkins Cost-effective bioprocess design for the manufacture of allogeneic CAR-T cell therapies using a decisional tool with multi-attribute decision-making analysis Biochem. Eng. J. 2018 10.1016/j.bej.2018.05.014 137 192 

  88. Moncaubeig Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement Biochem. Eng. J. 2018 10.1016/j.bej.2018.04.017 137 132 

  89. Toumi Design and Optimization of a Large Scale Biopharmaceutical Facility Using Process Simulation and Scheduling Tools Pharm. Eng. 2010 30 1 

  90. Subramanian, G. (2007). Processes Development and Optimization for Biotechnology Production-Monoclonal Antibodies. Bioseparation and Bioprocessing: A Handbook, 2., WILEY-VCH. 

  91. Green, D.W., and Perry, R.H. (2008). Perry’s Chemical Engineers’ Handbook, McGraw-Hill. [8th ed.]. 

  92. Peters, M.S., Timmerhaus, K.D., and West, R.E. (2003). Plant Design and Economics for Chemical Engineers, McGraw-Hill. [5th ed.]. 

  93. Netzer Digitale Transformation bei BASF-Fallstricke und Erfolgsbeispiele aus der Umsetzungspraxis Chem. Ing. Tech. 2018 10.1002/cite.201855350 90 1293 

  94. 10.3390/pr6060066 Sixt, M., Uhlenbrock, L., and Strube, J. (2018). Toward a Distinct and Quantitative Validation Method for Predictive Process Modelling-On the Example of Solid-Liquid Extraction Processes of Complex Plant Extracts. Processes, 6. 

  95. Jain, S. (2011). Verification and Validation of Simulation Models. Proceedings of the 2011 Winter Simulation Conference: (WSC), Phoenix, AZ, USA, 11-14 December 2011, Including the MASM (Modeling and Analysis for Semiconductor Manufacturing) Conference, IEEE. 

  96. Schleisinger Terminology for model credibility Simulation 1979 10.1177/003754977903200304 32 103 

  97. Pharmaceutical Technology (2018, November 17). Samsung BioLogics’ Third Manufacturing Facility, Songdo. Available online: https://www.pharmaceutical-technology.com/projects/samsung-biologics-third-manufacturing-facility-songdo/. 

  98. 10.1002/14356007.b03_10.pub2 Strube, J., Zobel-Roos, S., and Ditz, R. (2019). Chapter X: Process Chromatography. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley. 

  99. (2018, November 03). Available online: https://www.gehealthcare.com/. 

  100. (2018, November 03). Available online: http://www.bio-rad.com/. 

  101. (2018, November 03). Available online: https://www.pall.com/. 

  102. (2018, November 03). Available online: http://www.merckmillipore.com. 

  103. Kornecki Process analytical technology mechanisms in biologics manufacturing Chem. Ing. Tech. 2018 10.1002/cite.201855302 90 1270 

  104. 10.1002/cite.201855313 Kornecki, M. (2018). Host Cell Proteins in Biologics Manufacturing. A Methodical and Systematic Integration of Upstream and Downstream Processing, Achema. 

  105. 10.1002/cite.201855302 Kornecki, M. (2018). Process Analytical Technology Mechanisms in Biologics Manufacturing, Achema. 

  106. 10.3390/antib6030013 Kornecki, M., Mestmäcker, F., Zobel-Roos, S., Heikaus de Figueiredo, L., Schlüter, H., and Strube, J. (2017). Host Cell Proteins in Biologics Manufacturing: The Good, the Bad, and the Ugly. Antibodies, 6. 

  107. Huter Model-Based Optimization of SPTFF Ultrafiltration for Integration in Continuous Biopharmaceutical Processing Chem. Ing. Tech. 2018 10.1002/cite.201855263 90 1251 

  108. Huter, M. (2018). Modeling of Continuous Ultrafiltration for Biopharmaceutical Processes, Achema. 

  109. Lucke Integrating crystallization with experimental model parameter determination and modeling into conceptual process design for the purification of complex feed mixtures Chem. Eng. Res. Des. 2018 10.1016/j.cherd.2018.03.029 133 264 

  110. Meurer Parameter estimation for the simulation of liquid chromatography J. Chromatogr. A 1997 10.1016/S0021-9673(97)00173-8 769 59 

  111. Rouquerol The characterization of macroporous solids: An overview of the methodology Microporous Mesoporous Mater. 2012 10.1016/j.micromeso.2011.09.031 154 2 

  112. 10.1021/ie990488g Levenspiel, O. (1999). Chemical Reaction Engineering, Wiley. [3rd ed.]. 

  113. Experimental determination of single solute and competitive adsorption isotherms J. Chromatogr. A 2004 10.1016/j.chroma.2003.11.108 1037 255 

  114. Mazzotti Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm J. Chromatogr. A 2006 10.1016/j.chroma.2006.06.022 1126 311 

  115. 10.1016/B978-012370537-2/50030-8 Guiochon, G., Felinger, A., Shirazi, D.G., and Katti, A.M. (2006). Fundamentals of Preparative and Nonlinear Chromatography, Elsevier Academic Press. [2th ed.]. 

  116. Klepzig Rigorous modeling of lyophilization for botanicals and biologics process integration Chem. Ing. Tech. 2018 10.1002/cite.201855362 90 1299 

  117. 10.1002/cite.201855362 Klepzig, L. (2018). Rigorous Modelling of Lyophilisation for Botanicals and Biologics Process Integration, Achema. 

  118. Klepzig, L. (2018). Process Modelling in Combination with Experimental Model Parameter Determination, Parenteral Drug Association. 

  119. Gronemeyer DoE based integration approach of upstream and downstream processing regarding HCP and ATPE as harvest operation Biochem. Eng. J. 2016 10.1016/j.bej.2016.06.016 113 158 

  120. Meyer Omics and drug response Annu. Rev. Pharmacol. Toxicol. 2013 10.1146/annurev-pharmtox-010510-100502 53 475 

  121. Hu, W.S., and Zeng, A.-P. (2012). Advancing Biopharmaceutical Process Development by System-Level Data. Analysis and Integration of Omics Data. Genomics and Systems Biology of Mammalian Cell Culture, Springer. 

  122. Schaub CHO gene expression profiling in biopharmaceutical process analysis and design Biotechnol. Bioeng. 2010 10.1002/bit.22549 105 431 

  123. 10.1007/978-3-642-28350-5 Hu, W.S., and Zeng, A.-P. (2012). Genomics and Systems Biology of Mammalian Cell Culture, Springer. 

  124. Wiesel Modellierung der Trennung von Mehrkomponentensystemen mittels Gradientenelution in der präparativen Ionenaustausch-Chromatographie Chem. Ing. Tech. 2002 10.1002/1522-2640(200205)74:5<677::AID-CITE677>3.0.CO;2-C 74 677 

  125. 10.1016/j.reffit.2017.03.007 Sixt, M., and Strube, J. (2017). Pressurized hot water extraction of 10-deacetylbaccatin III from yew for industrial application. Resour-Effic. Technol. 

  126. Koudous, I., Sixt, M., and Strube, J. (2016). Model-Based Systematic Interpretation of the Extraction and Purification of 10-Deacetylbaccatin III from Taxus baccata, Berichte aus dem Julius Kühn-Institut. 

  127. 10.3390/pr5040086 Sixt, M., and Strube, J. (2017). Systematic and Model-Assisted Evaluation of Solvent Based- or Pressurized Hot Water Extraction for the Extraction of Artemisinin from Artemisia annua L.. Processes, 5. 

  128. 10.3390/pr6090161 Sixt, M., Schmidt, A., Mestmäcker, F., Huter, M., Uhlenbrock, L., and Strube, J. (2018). Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.-Part I: Conceptual Process Design and Cost Estimation. Processes, 6. 

  129. 10.3390/pr6100179 Schmidt, A., Sixt, M., Huter, M., Mestmäcker, F., and Strube, J. (2018). Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.-Part II: Model-Based Design of Agitated and Packed Columns for Multistage Extraction and Scrubbing. Processes, 6. 

  130. 10.3390/pr6100180 Mestmäcker, F., Schmidt, A., Huter, M., Sixt, M., and Strube, J. (2018). Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.-Part III: Chromatographic Purification. Processes, 6. 

  131. 10.3390/pr6100181 Huter, M., Schmidt, A., Mestmäcker, F., Sixt, M., and Strube, J. (2018). Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.-Part IV: Crystallization. Processes, 6. 

  132. Zobel Design and Operation of Continuous Countercurrent Chromatography in Biotechnological Production Ind. Eng. Chem. Res. 2014 10.1021/ie403103c 53 9169 

  133. Kirk, R.E., and Othmer, D.F. (2003). Application and Fundamentals of Liquid-Liquid Extraction Processes: Purification of Biologicals, Botanicals, and Strategic Metals. Encyclopedia of Chemical Technology, Wiley. 

  134. Sixt In-line Raman spectroscopy and advanced process control for the extraction of anethole and fenchone from fennel (Foeniculum vulgare L. MILL.) Comptes Rendus Chim. 2018 10.1016/j.crci.2017.12.004 21 97 

  135. Gudi Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.-Improved taxane isolation by accelerated quality control and process surveillance Talanta 2015 10.1016/j.talanta.2015.04.090 143 42 

  136. 10.1016/j.reffit.2017.03.001 Uhlenbrock, L., Sixt, M., and Strube, J. (2017). Quality-by-Design (QbD) process evaluation for phytopharmaceuticals on the example of 10-deacetylbaccatin III from yew. Resour-Effic. Technol. 

  137. CMC Biotech Working Group (2018, November 17). A-Mab: A Case Study in Bioprocess Development. Available online: http://www.casss.org/?page=286. 

  138. CMC-Vaccines Working Group (2018, November 17). A-VAX: Applying Quality by Design to Vaccines. Available online: http://qbdworks.com/wp-content/uploads/2014/06/a-vax-applying-qbd-to-vaccines.pdf. 

  139. 10.3390/antib6040024 Zobel-Roos, S., Mouellef, M., Siemers, C., and Strube, J. (2017). Process Analytical Approach towards Quality Controlled Process Automation for the Downstream of Protein Mixtures by Inline Concentration Measurements Based on Ultraviolet/Visible Light (UV/VIS) Spectral Analysis. Antibodies, 6. 

  140. 10.3390/antib7010013 Zobel-Roos, S., Stein, D., and Strube, J. (2018). Evaluation of Continuous Membrane Chromatography Concepts with an Enhanced Process Simulation Approach. Antibodies, 7. 

  141. 10.3390/bioengineering3040024 Schwellenbach, J., Zobel, S., Taft, F., Villain, L., and Strube, J. (2016). Purification of Monoclonal Antibodies Using a Fiber Based Cation-Exchange Stationary Phase: Parameter Determination and Modeling. Bioengineering, 3. 

  142. Mahler, A. (2018, November 07). Die Reifeprüfung. Available online: https://magazin.spiegel.de/SP/2018/42/159904415/index.html. 

  143. Bardt, H., Bertenrath, R., Demary, V., Fritsch, M., Grömling, M., Klös, H.-P., Kolev, G.V., Kroker, R., Lichtblau, K., and Matthes, J. (2016). Wohlstand in der Digitalen Welt. Erster IW-Strukturbericht, Institut der deutschen Wirtschaft Medien GmbH. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로