$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Modeling Sediment Bypassing around Idealized Rocky Headlands 원문보기

Journal of marine science and engineering, v.7 no.2, 2019년, pp.40 -   

George, Douglas A. (University of California, Davis, P.O. Box 247, Bodega Bay, CA 94923, USA) ,  Largier, John L. (University of California, Davis, P.O. Box 247, Bodega Bay, CA 94923, USA) ,  Pasternack, Gregory Brian (Department of Hydrologic Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA) ,  Barnard, Patrick L. (Pacific Coastal and Marine Science Center, United States Geological Survey, Santa Cruz, CA 95060, USA) ,  Storlazzi, Curt D. (Pacific Coastal and Marine Science Center, United States Geological Survey, Santa Cruz, CA 95060, USA) ,  Erikson, Li H. (Pacific Coastal and Marine Science Center, United States Geological Survey, Santa Cruz, CA 95060, USA)

Abstract AI-Helper 아이콘AI-Helper

Alongshore sediment bypassing rocky headlands remains understudied despite the importance of characterizing littoral processes for erosion abatement, beach management, and climate change adaptation. To address this gap, a numerical model sediment transport study was developed to identify controlling...

참고문헌 (79)

  1. Dai Patterns of Sediment Transport Pathways on a Headland Bay Beach-Nanwan Beach, South China: A Case Study J. Coast. Res. 2010 10.2112/JCOASTRES-D-09-00097.1 26 1096 

  2. Silva Hydrodynamics of a headland-bay beach-Nearshore current circulation Coast. Eng. 2010 10.1016/j.coastaleng.2009.10.003 57 160 

  3. Backstrom Mesoscale shoreface morphodynamics on a high-energy regressive coast Cont. Shelf Res. 2009 10.1016/j.csr.2009.01.017 29 1361 

  4. 10.1029/2004JC002662 Roughan, M., Terrill, E.J., Largier, J.L., and Otero, M.P. (2005). Observations of divergence and upwelling around Point Loma, California. J. Geophys. Res.-Ocean., 110. 

  5. Warner Dissecting the Pressure Field in Tidal Flow past a Headland: When Is Form Drag “Real”? J. Phys. Oceanogr. 2009 10.1175/2009JPO4173.1 39 2971 

  6. Signell Transient Eddy Formation around Headlands J. Geophys. Res.-Ocean. 1991 10.1029/90JC02029 96 2561 

  7. Magaldi Turbulent flow regimes behind a coastal cape in a stratified and rotating environment Ocean. Model. 2008 10.1016/j.ocemod.2008.06.006 25 65 

  8. Short, A.D. (1999). Handbook of Beach and Shoreface Morphodynamics, John Wiley. 

  9. Inman Status of Research on the Nearshore Shore Beach 1994 62 11 

  10. Erikson Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios Ocean. Model. 2015 10.1016/j.ocemod.2015.07.004 96 171 

  11. Adams Effects of climate change and wave direction on longshore sediment transport patterns in Southern California Clim. Chang. 2011 10.1007/s10584-011-0317-0 109 211 

  12. Nienhuis Alongshore sediment bypassing as a control on river mouth morphodynamics J. Geophys. Res. Earth Surf. 2016 10.1002/2015JF003780 121 664 

  13. King Can California coastal managers plan for sea-level rise in a cost-effective way? J. Environ. Plan. Manag. 2016 10.1080/09640568.2014.985291 59 98 

  14. Davies Eddy Formation Behind a Coastal Headland J. Coast. Res. 1995 11 154 

  15. Park Tidal Vorticity around a Coastal Promontory J. Oceanogr. 2000 10.1023/A:1011199532644 56 261 

  16. Alaee Secondary circulation induced by flow curvature and Coriolis effects around headlands and islands Ocean. Dyn. 2004 10.1007/s10236-003-0058-3 54 27 

  17. Berthot Mechanisms for the formation of headland-associated linear sandbanks Cont. Shelf Res. 2006 10.1016/j.csr.2006.03.004 26 987 

  18. Guillou Effects of waves on the initiation of headland-associated sandbanks Cont. Shelf Res. 2011 10.1016/j.csr.2011.04.013 31 1202 

  19. 10.1029/2005JC002944 Jones, O.P., Simons, R.R., Jones, E.J.W., and Harris, J.M. (2006). Influence of seabed slope and Coriolis effects on the development of sandbanks near headlands. J. Geophys. Res.-Ocean., 111. 

  20. Van Rijn, L.C. (2010). Coastal Erosion Control Based on the Concept of Sediment Cells, CONSCIENCE. D13a. 

  21. Rosati Concepts in sediment budgets J. Coast. Res. 2005 10.2112/02-475A.1 21 307 

  22. Inman, D.L., and Frautschy, J.D. (1965). Littoral processes and the development of shorelines. Proceedings of Coastal Engineering Special Conference, ASCE. 

  23. Patsch, K., and Griggs, G. (2006). Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline, Institute of Marine Sciences; University of California. 

  24. Western Australia Department of Transport (2012). Coastal Sediment Cells between Cape Naturaliste and the Moore River, Western Australia Transport, Damara WA Pty Ltd. and Geological Survey of Western Australia. 

  25. Davies The coastal sediment compartment Aust. Geogr. Stud. 1974 10.1111/j.1467-8470.1974.tb00270.x 12 139 

  26. Limber Coastal sediment budgets and the littoral cutoff diameter: A grain size threshold for quantifying active sediment inputs J. Coast. Res. 2008 10.2112/06-0675.1 24 122 

  27. George Classification of rocky headlands in California with relevance to littoral cell boundary delineation Mar. Geol. 2015 10.1016/j.margeo.2015.08.010 369 137 

  28. Stelling, G.S. (1984). On the Construction of Computational Methods for Shallow Water Flow Problems. [Ph.D. Thesis, Delft University of Technology]. 

  29. Lesser Development and validation of a three-dimensional morphological model Coast. Eng. 2004 10.1016/j.coastaleng.2004.07.014 51 883 

  30. Holthuijsen, L.H., Booij, N., and Ris, R.C. (1993, January 25-28). A spectral wave model for the coastal zone. Proceedings of the 2nd International Symposium on Ocean Wave Measurement and Analysis, New Orleans, LA, USA. 

  31. Booij A third-generation wave model for coastal regions-1. Model description and validation J. Geophys. Res.-Ocean. 1999 10.1029/98JC02622 104 7649 

  32. Ris A third-generation wave model for coastal regions-2. Verification J. Geophys. Res.-Ocean. 1999 10.1029/1998JC900123 104 7667 

  33. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport J. Hydraul. Eng. 2007 10.1061/(ASCE)0733-9429(2007)133:6(649) 133 649 

  34. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport J. Hydraul. Eng. 2007 10.1061/(ASCE)0733-9429(2007)133:6(668) 133 668 

  35. Unified View of Sediment Transport by Currents and Waves. III: Graded Beds J. Hydraul. Eng. 2007 10.1061/(ASCE)0733-9429(2007)133:7(761) 133 761 

  36. Elias Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA) Mar. Geol. 2013 10.1016/j.margeo.2012.07.003 345 207 

  37. Leatherman, S.P. (1979). Barrier island morphology as a function of wave and tide regime. Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico, Academic Press. 

  38. Lesser, G.R. (2009). An Approach to Medium-Term Coastal Morphological Modeling. [Ph.D. Thesis, Delft University of Technology]. 

  39. Hansen Changes in surfzone morphodynamics driven by multi-decadal contraction of a large ebb-tidal delta Mar. Geol. 2013 10.1016/j.margeo.2013.07.005 345 221 

  40. Erikson, L.H., Storlazzi, C.D., and Golden, N.E. (2014). Modeling Wave and Seabed Energetics on the California Continental Shelf, Pamphlet to Accompany Data Set. 

  41. Noble Coastal ocean transport patterns in the central Southern California Bight Earth Sci. Urban. Ocean. South Calif. Cont. Borderl. 2009 454 193 

  42. Largier Subtidal Circulation over the Northern California Shelf J. Geophys. Res.-Ocean. 1993 10.1029/93JC01074 98 18147 

  43. Barnard Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System Mar. Geol. 2013 10.1016/j.margeo.2013.08.007 345 181 

  44. Barnard, P.L., Griggs, G., and Mustain, N. (2007, January 13-17). A Rapid Compatibility Analysis of Potential Offshore Sand Sources for Beaches of the Santa Barbara Littoral Cell. Proceedings of the Sixth International Symposium on Coastal Engineering and Science of Coastal Sediment Processes (Coastal Sediments ’07), New Orleans, LA, USA. 

  45. Soulsby, R. (1997). Dynamics of Marine Sands: A Manual for Practical Applications, Thomas Telford. 

  46. Erikson The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet Mar. Geol. 2013 10.1016/j.margeo.2013.06.001 345 96 

  47. Gelfenbaum Large-scale dam removal on the Elwha River, Washington, USA: Coastal geomorphic change Geomorphology 2015 10.1016/j.geomorph.2015.01.002 246 649 

  48. Elias Validation of a coupled wave-flow model in a high-energy setting: The mouth of the Columbia River J. Geophys. Res.-Ocean. 2012 10.1029/2012JC008105 117 21 

  49. Benedet Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits Coast. Eng. 2008 10.1016/j.coastaleng.2008.06.008 55 1224 

  50. Hoeke Drivers of circulation in a fringing coral reef embayment: A wave-flow coupled numerical modeling study of Hanalei Bay, Hawaii Cont. Shelf Res. 2013 10.1016/j.csr.2013.03.007 58 79 

  51. Toldo Headland sand bypassing-Quantification of net sediment transport in embayed beaches, Santa Catarina Island North Shore, Southern Brazil Mar. Geol. 2016 10.1016/j.margeo.2016.05.008 379 13 

  52. 10.3390/jmse6030094 McCarroll, R.J., Masselink, G., Valiente, N.G., Scott, T., King, E.V., and Conley, D. (2018). Wave and Tidal Controls on Embayment Circulation and Headland Bypassing for an Exposed, Macrotidal Site. J. Mar. Sci. Eng., 6. 

  53. Bijker, E.W. (1967). Some Considerations about Scales for Coastal Models with Movable Bed, Delft Hydraulics Laboratory. 

  54. Deltares (2014). Delft3D-FLOW User Manual, Deltares. 

  55. Bailard An Energetics Total Load Sediment Transport Model for Plane Sloping Beaches J. Geophys. Res. 1981 10.1029/JC086iC11p10938 86 10938 

  56. Haff Limitations on predictive modeling in geomorphology Sci. Nat. Geomorphol. 1996 27 337 

  57. Reed Modeling sediment entrainment and transport processes limited by bed armoring Mar. Geol. 1999 10.1016/S0025-3227(98)00109-1 154 143 

  58. Liu, P.L.-F. (2010). Introduction to Coastal Engineering and Management, World Scientific. [2nd ed.]. 

  59. 10.1017/CBO9780511754500 Dean, R.G., and Dalrymple, R.A. (2002). Coastal Processes with Engineering Applications, Cambridge University Press. 

  60. 10.1029/2005JF000422 Ashton, A.D., and Murray, A.B. (2006). High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J. Geophys. Res.-Earth Surf., 111. 

  61. 10.1029/2005JF000423 Ashton, A.D., and Murray, A.B. (2006). High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. J. Geophys. Res.-Earth Surf., 111. 

  62. Habel, J.S., and Armstrong, G.A. (1978). Assessment and Atlas of Shoreline Erosion Along the California Coast, State of California, Department of Navigation and Ocean Development. 

  63. Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. [Ph.D. Thesis, Technical University Berlin]. 

  64. Battalio Littoral Processes Along the Pacific and Bay Shores of San Francisco, California, USA Shore Beach 2014 82 3 

  65. Goodwin An insight into headland sand bypassing and wave climate. variability from shoreface bathymetric change at Byron Bay, New South Wales, Australia Mar. Geol. 2013 10.1016/j.margeo.2013.05.005 341 29 

  66. Markov Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga Izvestiya Fiziko-Matematicheskogo Obschestva Pri Kazanskom Universitete 1906 15 135 

  67. Metropolis Equation of State Calculations by Fast Computing Machines J. Chem. Phys. 1953 10.1063/1.1699114 21 1087 

  68. Ruggiero Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling Coast. Eng. 2009 10.1016/j.coastaleng.2009.08.003 56 1153 

  69. Loureiro Geologically constrained morphological variability and boundary effects on embayed beaches Mar. Geol. 2012 10.1016/j.margeo.2012.09.010 329 1 

  70. Mousavi Wave-driven sediment transport and beach-dune dynamics in a headland bay beach Mar. Geol. 2012 323 29 

  71. Bastos Sedimentary processes, bedforms and facies, associated with a coastal, headland: Portland Bill, Southern UK Mar. Geol. 2002 10.1016/S0025-3227(02)00380-8 187 235 

  72. Sanderson Compartmentalisation of beachface sediments along the southwestern coast of Australia Mar. Geol. 1999 10.1016/S0025-3227(99)00046-8 162 145 

  73. Komar Shoreline Evolution and Management of Hawke’s Bay, New Zealand: Tectonics, Coastal Processes, and Human Impacts J. Coast. Res. 2010 10.2112/08-1079.1 26 143 

  74. Chelli The relative influence of lithology and weathering in shaping shore platforms along the coastline of the Gulf of La Spezia (NW Italy) as revealed by rock strength Geomorphology 2010 10.1016/j.geomorph.2009.12.011 118 93 

  75. Bowman Pocket beaches of Elba Island (Italy)-Planview geometry, depth of closure and sediment dispersal Estuar. Coast. Shelf Sci. 2014 10.1016/j.ecss.2013.12.005 138 37 

  76. Bin Ab Razak, M.S. (2015). Natural Headland Sand Bypassing; Towards Identifying and Modelling the Mechanisms and Processes, CRC Press/Balkema. 

  77. Hume Sediment facies and pathways of sand transport about a large deep water headland, Cape Rodney, New Zealand N. Z. J. Mar. Freshw. Res. 2000 10.1080/00288330.2000.9516971 34 695 

  78. Bowman Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain) Geomorphology 2009 10.1016/j.geomorph.2009.01.005 108 191 

  79. George Wave climate, sediment supply and the depth of the sand-mud transition: A global survey Mar. Geol. 2008 10.1016/j.margeo.2008.05.005 254 121 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로