$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Obesity, DNA Damage, and Development of Obesity-Related Diseases 원문보기

International journal of molecular sciences, v.20 no.5, 2019년, pp.1146 -   

Włodarczyk, Marta (Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy with Division of Laboratory Medicine, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland) ,  Nowicka, Grażyna (grazyna.nowicka@wum.edu.pl)

Abstract AI-Helper 아이콘AI-Helper

Obesity has been recognized to increase the risk of such diseases as cardiovascular diseases, diabetes, and cancer. It indicates that obesity can impact genome stability. Oxidative stress and inflammation, commonly occurring in obesity, can induce DNA damage and inhibit DNA repair mechanisms. Accumu...

주제어

참고문헌 (162)

  1. 1. Leung Y.M. Pollack L.M. Colditz G.A. Chang S.H. Life years lost and lifetime health care expenditures associated with diabetes in the U.S., National Health Interview Survey, 1997–2000 Diabetes Care 2015 38 460 468 10.2337/dc14-1453 25552420 

  2. 2. Ligibel J.A. Alfano C.M. Courneya K.S. Demark-Wahnefried W. Burger R.A. Chlebowski R.T. Fabian C.J. Gucalp A. Hershman D.L. Hudson M.M. American Society of Clinical Oncology position statement on obesity and cancer J. Clin. Oncol. 2014 32 3568 3574 10.1200/JCO.2014.58.4680 25273035 

  3. 3. Scherer P.E. Hill J.A. Obesity, diabetes, and cardiovascular diseases: A compendium Circ. Res. 2016 118 1703 1705 10.1161/CIRCRESAHA.116.308999 27230636 

  4. 4. Cerda C. Sanchez C. Climent B. Vazquez A. Iradi A. El Amrani F. Bediaga A. Saez G.T. Oxidative stress and DNA damage in obesity-related tumorigenesis Adv. Exp. Med. Biol. 2014 824 5 17 25038989 

  5. 5. Wlodarczyk M. Jablonowska-Lietz B. Olejarz W. Nowicka G. Anthropometric and dietary factors as predictors of DNA damage in obese women Nutrients 2018 10 578 10.3390/nu10050578 29738492 

  6. 6. Zaki M. Basha W. El-Bassyouni H.T. El-Toukhy S. Hussein T. Evaluation of DNA damage profile in obese women and its association to risk of metabolic syndrome, polycystic ovary syndrome and recurrent preeclampsia Genes Dis. 2018 5 367 373 10.1016/j.gendis.2018.03.001 30591939 

  7. 7. Irigaray P. Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens Carcinogenesis 2010 31 135 148 10.1093/carcin/bgp252 19858070 

  8. 8. Heilbronn L.K. de Jonge L. Frisard M.I. DeLany J.P. Larson-Meyer D.E. Rood J. Nguyen T. Martin C.K. Volaufova J. Most M.M. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: A randomized controlled trial JAMA 2006 295 1539 1548 10.1001/jama.295.13.1539 16595757 

  9. 9. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs Oncotarget 2018 9 7204 7218 10.18632/oncotarget.23208 29467962 

  10. 10. Abou-Raya S. Abou-Raya A. Naim A. Abuelkheir H. Chronic inflammatory autoimmune disorders and atherosclerosis Ann. N. Y. Acad. Sci. 2007 1107 56 67 10.1196/annals.1381.007 17804533 

  11. 11. Lopez-Candales A. Burgos P.M.H. Hernandez-Suarez D.F. Harris D. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome J. Nat. Sci. 2017 3 e341 28670620 

  12. 12. Dan Dunn J. Alvarez L.A. Zhang X. Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis Redox Biol. 2015 6 472 485 10.1016/j.redox.2015.09.005 26432659 

  13. 13. De Bont R. van Larebeke N. Endogenous DNA damage in humans: A review of quantitative data Mutagenesis 2004 19 169 185 10.1093/mutage/geh025 15123782 

  14. 14. Yu Y. Cui Y. Niedernhofer L.J. Wang Y. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage Chem. Res. Toxicol. 2016 29 2008 2039 10.1021/acs.chemrestox.6b00265 27989142 

  15. 15. Luczaj W. Skrzydlewska E. DNA damage caused by lipid peroxidation products Cell Mol. Biol. Lett. 2003 8 391 413 12813574 

  16. 16. Jena N.R. DNA damage by reactive species: Mechanisms, mutation and repair J. Biosci. 2012 37 503 517 10.1007/s12038-012-9218-2 22750987 

  17. 17. Kehrer J.P. The Haber-Weiss reaction and mechanisms of toxicity Toxicology 2000 149 43 50 10.1016/S0300-483X(00)00231-6 10963860 

  18. 18. Thomas C. Mackey M.M. Diaz A.A. Cox D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation Redox Rep. 2009 14 102 108 10.1179/135100009X392566 19490751 

  19. 19. Dedon P.C. Tannenbaum S.R. Reactive nitrogen species in the chemical biology of inflammation Arch. Biochem. Biophys. 2004 423 12 22 10.1016/j.abb.2003.12.017 14989259 

  20. 20. Kamiya H. Mutagenic potentials of damaged nucleic acids produced by reactive oxygen/nitrogen species: Approaches using synthetic oligonucleotides and nucleotides: Survey and summary Nucleic Acids Res. 2003 31 517 531 10.1093/nar/gkg137 12527759 

  21. 21. Sova H. Jukkola-Vuorinen A. Puistola U. Kauppila S. Karihtala P. 8-Hydroxydeoxyguanosine: A new potential independent prognostic factor in breast cancer Br. J. Cancer 2010 102 1018 1023 10.1038/sj.bjc.6605565 20179711 

  22. 22. McGowan C.H. Russell P. The DNA damage response: Sensing and signaling Curr. Opin. Cell Biol. 2004 16 629 633 10.1016/j.ceb.2004.09.005 15530773 

  23. 23. Allione A. Guarrera S. Russo A. Ricceri F. Purohit R. Pagnani A. Rosa F. Polidoro S. Voglino F. Matullo G. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes Mutat. Res. 2013 751–752 49 54 10.1016/j.mrfmmm.2013.08.005 24004570 

  24. 24. Nagel Z.D. Chaim I.A. Samson L.D. Inter-individual variation in DNA repair capacity: A need for multi-pathway functional assays to promote translational DNA repair research DNA Repair 2014 19 199 213 10.1016/j.dnarep.2014.03.009 24780560 

  25. 25. Kabzinski J. Mucha B. Cuchra M. Markiewicz L. Przybylowska K. Dziki A. Dziki L. Majsterek I. Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population Oxid Med. Cell Longev. 2016 2016 3125989 10.1155/2016/3125989 26649135 

  26. 26. Slyskova J. Lorenzo Y. Karlsen A. Carlsen M.H. Novosadova V. Blomhoff R. Vodicka P. Collins A.R. Both genetic and dietary factors underlie individual differences in DNA damage levels and DNA repair capacity DNA Repair 2014 16 66 73 10.1016/j.dnarep.2014.01.016 24674629 

  27. 27. Hakem R. DNA-damage repair; the good, the bad, and the ugly EMBO J. 2008 27 589 605 10.1038/emboj.2008.15 18285820 

  28. 28. Cleaver J.E. Profile of Tomas Lindahl, Paul Modrich, and Aziz Sancar, 2015 Nobel Laureates in Chemistry Proc. Natl. Acad. Sci. USA 2016 113 242 245 10.1073/pnas.1521829112 26715755 

  29. 29. Lindahl T. Karran P. Wood R.D. DNA excision repair pathways Curr. Opin. Genet. Dev. 1997 7 158 169 10.1016/S0959-437X(97)80124-4 9115419 

  30. 30. Sancar A. Excision repair in mammalian cells J. Biol. Chem. 1995 270 15915 15918 10.1074/jbc.270.27.15915 7608140 

  31. 31. Bukhari S.A. Rajoka M.I. Ibrahim Z. Jalal F. Rana S.M. Nagra S.A. Oxidative stress elevated DNA damage and homocysteine level in normal pregnant women in a segment of Pakistani population Mol. Biol. Rep. 2011 38 2703 2710 10.1007/s11033-010-0413-7 21107731 

  32. 32. Tomasello B. Malfa G. Galvano F. Reins M. DNA damage in normal-weight obese syndrome measured by Comet assay Mediterr. J. Nutr. Metab. 2011 2 99 104 10.1007/s12349-010-0035-6 

  33. 33. Scarpato R. Verola C. Fabiani B. Bianchi V. Saggese G. Federico G. Nuclear damage in peripheral lymphocytes of obese and overweight Italian children as evaluated by the gamma-H2AX focus assay and micronucleus test FASEB J. 2011 25 685 693 10.1096/fj.10-168427 21068397 

  34. 34. Azzara A. Pirillo C. Giovannini C. Federico G. Scarpato R. Different repair kinetic of DSBs induced by mitomycin C in peripheral lymphocytes of obese and normal weight adolescents Mutat. Res. 2016 789 9 14 10.1016/j.mrfmmm.2016.05.001 27174706 

  35. 35. Donmez-Altuntas H. Sahin F. Bayram F. Bitgen N. Mert M. Guclu K. Hamurcu Z. Aribas S. Gundogan K. Diri H. Evaluation of chromosomal damage, cytostasis, cytotoxicity, oxidative DNA damage and their association with body-mass index in obese subjects Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014 771 30 36 10.1016/j.mrgentox.2014.06.006 25308439 

  36. 36. Karbownik-Lewinska M. Szosland J. Kokoszko-Bilska A. Stepniak J. Zasada K. Gesing A. Lewinski A. Direct contribution of obesity to oxidative damage to macromolecules Neuro Endocrinol. Lett. 2012 33 453 461 22936256 

  37. 37. Kocael A. Erman H. Zengin K. Kocael P.C. Korkmaz G.G. Gelisgen R. Taskin M. Ersan Y. Uzun H. The effects on oxidative DNA damage of laparoscopic gastric band applications in morbidly obese patients Can. J. Surg. 2014 57 183 187 10.1503/cjs.008113 24869610 

  38. 38. Setayesh T. Nersesyan A. Misik M. Ferk F. Langie S. Andrade V.M. Haslberger A. Knasmuller S. Impact of obesity and overweight on DNA stability: Few facts and many hypotheses Mutat. Res. 2018 777 64 91 10.1016/j.mrrev.2018.07.001 30115431 

  39. 39. Iyer A. Fairlie D.P. Prins J.B. Hammock B.D. Brown L. Inflammatory lipid mediators in adipocyte function and obesity Nat. Rev. Endocrinol. 2010 6 71 82 10.1038/nrendo.2009.264 20098448 

  40. 40. Han C.Y. Roles of Reactive Oxygen Species on Insulin Resistance in Adipose Tissue Diabetes Metab. J. 2016 40 272 279 10.4093/dmj.2016.40.4.272 27352152 

  41. 41. Han C.Y. Umemoto T. Omer M. den Hartigh L.J. Chiba T. LeBoeuf R. Buller C.L. Sweet I.R. Pennathur S. Abel E.D. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes J. Biol. Chem. 2012 287 10379 10393 10.1074/jbc.M111.304998 22287546 

  42. 42. Weisberg S.P. McCann D. Desai M. Rosenbaum M. Leibel R.L. Ferrante A.W. Jr. Obesity is associated with macrophage accumulation in adipose tissue J. Clin. Investig. 2003 112 1796 1808 10.1172/JCI200319246 14679176 

  43. 43. Gao C.L. Zhu C. Zhao Y.P. Chen X.H. Ji C.B. Zhang C.M. Zhu J.G. Xia Z.K. Tong M.L. Guo X.R. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes Mol. Cell Endocrinol. 2010 320 25 33 10.1016/j.mce.2010.01.039 20144685 

  44. 44. Heo J.W. No M.H. Park D.H. Kang J.H. Seo D.Y. Han J. Neufer P.D. Kwak H.B. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle Korean J. Physiol. Pharmacol. 2017 21 567 577 10.4196/kjpp.2017.21.6.567 29200899 

  45. 45. Fehsel K. Kolb-Bachofen V. Kolb H. Analysis of TNF alpha-induced DNA strand breaks at the single cell level Am. J. Pathol. 1991 139 251 254 1867316 

  46. 46. Arango Duque G. Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases Front. Immunol. 2014 5 491 10.3389/fimmu.2014.00491 25339958 

  47. 47. Rastogi S. Boylan M. Wright E.G. Coates P.J. Interactions of apoptotic cells with macrophages in radiation-induced bystander signaling Radiat. Res. 2013 179 135 145 10.1667/RR2969.1 23237586 

  48. 48. Speed N. Blair I.A. Cyclooxygenase- and lipoxygenase-mediated DNA damage Cancer Metastasis Rev. 2011 30 437 447 10.1007/s10555-011-9298-8 22009064 

  49. 49. Faber T.J. Japink D. Leers M.P. Sosef M.N. von Meyenfeldt M.F. Nap M. Activated macrophages containing tumor marker in colon carcinoma: Immunohistochemical proof of a concept Tumour Biol. 2012 33 435 441 10.1007/s13277-011-0269-z 22134871 

  50. 50. O’Callaghan N.J. Clifton P.M. Noakes M. Fenech M. Weight loss in obese men is associated with increased telomere length and decreased abasic sites in rectal mucosa Rejuvenation Res. 2009 12 169 176 10.1089/rej.2008.0819 19594325 

  51. 51. Fejfer K. Buczko P. Niczyporuk M. Ladny J.R. Hady H.R. Knas M. Waszkiel D. Klimiuk A. Zalewska A. Maciejczyk M. Oxidative modification of biomolecules in the nonstimulated and stimulated saliva of patients with morbid obesity treated with bariatric surgery Biomed. Res. Int. 2017 2017 4923769 10.1155/2017/4923769 29457027 

  52. 52. Himbert C. Thompson H. Ulrich C.M. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length—A systematic review Obes. Facts 2017 10 648 665 10.1159/000479972 29237161 

  53. 53. Tyson J. Caple F. Spiers A. Burtle B. Daly A.K. Williams E.A. Hesketh J.E. Mathers J.C. Inter-individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype Br. J. Nutr. 2009 101 1316 1323 10.1017/S0007114508076265 18838045 

  54. 54. Adcock I.M. Cosio B. Tsaprouni L. Barnes P.J. Ito K. Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response Antioxid. Redox Signal. 2005 7 144 152 10.1089/ars.2005.7.144 15650403 

  55. 55. Kidane D. Chae W.J. Czochor J. Eckert K.A. Glazer P.M. Bothwell A.L. Sweasy J.B. Interplay between DNA repair and inflammation, and the link to cancer Crit. Rev. Biochem. Mol. Biol. 2014 49 116 139 10.3109/10409238.2013.875514 24410153 

  56. 56. Liu R.H. Hotchkiss J.H. Potential genotoxicity of chronically elevated nitric oxide: A review Mutat. Res. 1995 339 73 89 10.1016/0165-1110(95)90004-7 7791803 

  57. 57. McAdam E. Brem R. Karran P. Oxidative stress-induced protein damage inhibits DNA repair and determines mutation risk and therapeutic efficacy Mol. Cancer Res. 2016 14 612 622 10.1158/1541-7786.MCR-16-0053 27106867 

  58. 58. Nikodemova M. Yee J. Carney P.R. Bradfield C.A. Malecki K.M. Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures Environ. Int. 2018 113 249 258 10.1016/j.envint.2018.02.016 29459183 

  59. 59. Zwamborn R.A. Slieker R.C. Mulder P.C. Zoetemelk I. Verschuren L. Suchiman H.E. Toet K.H. Droog S. Slagboom P.E. Kooistra T. Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice Sci. Rep. 2017 7 43261 10.1038/srep43261 28256596 

  60. 60. Keleher M.R. Zaidi R. Hicks L. Shah S. Xing X. Li D. Wang T. Cheverud J.M. A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice BMC Genom. 2018 19 888 10.1186/s12864-018-5327-0 30526554 

  61. 61. Wang D. Zhao R. Qu Y.Y. Mei X.Y. Zhang X. Zhou Q. Li Y. Yang S.B. Zuo Z.G. Chen Y.M. Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair Cell Rep. 2018 25 398 412 10.1016/j.celrep.2018.09.022 30304680 

  62. 62. Harreus U. Baumeister P. Zieger S. Matthias C. The influence of high doses of vitamin C and zinc on oxidative DNA damage Anticancer Res. 2005 25 3197 3201 16101127 

  63. 63. Huang H.Y. Helzlsouer K.J. Appel L.J. The effects of vitamin C and vitamin E on oxidative DNA damage: Results from a randomized controlled trial Cancer Epidemiol. Biomark. Prev. 2000 9 647 652 

  64. 64. Remely M. Ferk F. Sterneder S. Setayesh T. Roth S. Kepcija T. Noorizadeh R. Rebhan I. Greunz M. Beckmann J. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice Oxid Med. Cell Longev. 2017 2017 3079148 10.1155/2017/3079148 28133504 

  65. 65. Remely M. Ferk F. Sterneder S. Setayesh T. Kepcija T. Roth S. Noorizadeh R. Greunz M. Rebhan I. Wagner K.H. Vitamin E modifies high-fat diet-induced increase of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice Nutrients 2017 9 607 10.3390/nu9060607 28613268 

  66. 66. Van Houten B. Hunter S.E. Meyer J.N. Mitochondrial DNA damage induced autophagy, cell death, and disease Front. Biosci. 2016 21 42 54 10.2741/4375 

  67. 67. Stein A. Sia E.A. Mitochondrial DNA repair and damage tolerance Front. Biosci. 2017 22 920 943 

  68. 68. Taanman J.W. The mitochondrial genome: Structure, transcription, translation and replication Biochim. Biophys. Acta 1999 1410 103 123 10.1016/S0005-2728(98)00161-3 10076021 

  69. 69. Wang J. Xiong S. Xie C. Markesbery W.R. Lovell M.A. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease J. Neurochem. 2005 93 953 962 10.1111/j.1471-4159.2005.03053.x 15857398 

  70. 70. Nishikawa M. Oshitani N. Matsumoto T. Nishigami T. Arakawa T. Inoue M. Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis Br. J. Cancer 2005 93 331 337 10.1038/sj.bjc.6602664 15956973 

  71. 71. Bensch K.G. Mott J.L. Chang S.W. Hansen P.A. Moxley M.A. Chambers K.T. de Graaf W. Zassenhaus H.P. Corbett J.A. Selective mtDNA mutation accumulation results in beta-cell apoptosis and diabetes development Am. J. Physiol. Endocrinol. Metab. 2009 296 E672 E680 10.1152/ajpendo.90839.2008 19158322 

  72. 72. Chinnery P.F. Hudson G. Mitochondrial genetics Br. Med. Bull. 2013 106 135 159 10.1093/bmb/ldt017 23704099 

  73. 73. Sutherland L.N. Capozzi L.C. Turchinsky N.J. Bell R.C. Wright D.C. Time course of high-fat diet-induced reductions in adipose tissue mitochondrial proteins: Potential mechanisms and the relationship to glucose intolerance Am. J. Physiol. Endocrinol. Metab. 2008 295 E1076 E1083 10.1152/ajpendo.90408.2008 18780775 

  74. 74. Turner N. Bruce C.R. Beale S.M. Hoehn K.L. So T. Rolph M.S. Cooney G.J. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: Evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents Diabetes 2007 56 2085 2092 10.2337/db07-0093 17519422 

  75. 75. Lee H. Oh S. Yang W. Park R. Kim H. Jeon J.S. Noh H. Han D.C. Cho K.W. Kim Y.J. Bariatric surgery reduces elevated urinary mitochondrial DNA copy number in obese patients J. Clin. Endocrinol. Metab. 2019 10.1210/jc.2018-01935 30657970 

  76. 76. Yuzefovych L.V. Musiyenko S.I. Wilson G.L. Rachek L.I. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice PLoS ONE 2013 8 e54059 10.1371/journal.pone.0054059 23342074 

  77. 77. Pazmandi K. Agod Z. Kumar B.V. Szabo A. Fekete T. Sogor V. Veres A. Boldogh I. Rajnavolgyi E. Lanyi A. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells Free Radic. Biol. Med. 2014 77 281 290 10.1016/j.freeradbiomed.2014.09.028 25301097 

  78. 78. Shimada K. Crother T.R. Karlin J. Dagvadorj J. Chiba N. Chen S. Ramanujan V.K. Wolf A.J. Vergnes L. Ojcius D.M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis Immunity 2012 36 401 414 10.1016/j.immuni.2012.01.009 22342844 

  79. 79. Patro B. Liber A. Zalewski B. Poston L. Szajewska H. Koletzko B. Maternal and paternal body mass index and offspring obesity: A systematic review Ann. Nutr. Metab. 2013 63 32 41 10.1159/000350313 23887153 

  80. 80. Wahl S. Drong A. Lehne B. Loh M. Scott W.R. Kunze S. Tsai P.C. Ried J.S. Zhang W. Yang Y. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity Nature 2017 541 81 86 10.1038/nature20784 28002404 

  81. 81. Campbell J.M. Lane M. Owens J.A. Bakos H.W. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: A systematic review and meta-analysis Reprod. Biomed. Online 2015 31 593 604 10.1016/j.rbmo.2015.07.012 26380863 

  82. 82. Kort H.I. Massey J.B. Elsner C.W. Mitchell-Leef D. Shapiro D.B. Witt M.A. Roudebush W.E. Impact of body mass index values on sperm quantity and quality J. Androl. 2006 27 450 452 10.2164/jandrol.05124 16339454 

  83. 83. Evenson D.P. Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility Theriogenology 2006 65 979 991 10.1016/j.theriogenology.2005.09.011 16242181 

  84. 84. Abdelbaki S.A. Sabry J.H. Al-Adl A.M. Sabry H.H. The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: A prospective controlled study Arab. J. Urol. 2017 15 131 139 10.1016/j.aju.2017.03.002 29071142 

  85. 85. Tunc O. Bakos H.W. Tremellen K. Impact of body mass index on seminal oxidative stress Andrologia 2011 43 121 128 10.1111/j.1439-0272.2009.01032.x 21382066 

  86. 86. Lezaja A. Altmeyer M. Inherited DNA lesions determine G1 duration in the next cell cycle Cell Cycle 2018 17 24 32 10.1080/15384101.2017.1383578 28980862 

  87. 87. Soubry A. Epigenetic inheritance and evolution: A paternal perspective on dietary influences Prog. Biophys. Mol. Biol. 2015 118 79 85 10.1016/j.pbiomolbio.2015.02.008 25769497 

  88. 88. Hammoud S.S. Nix D.A. Hammoud A.O. Gibson M. Cairns B.R. Carrell D.T. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men Hum. Reprod. 2011 26 2558 2569 10.1093/humrep/der192 21685136 

  89. 89. McPherson N.O. Fullston T. Aitken R.J. Lane M. Paternal obesity, interventions, and mechanistic pathways to impaired health in offspring Ann. Nutr. Metab. 2014 64 231 238 10.1159/000365026 25300265 

  90. 90. Noblanc A. Damon-Soubeyrand C. Karrich B. Henry-Berger J. Cadet R. Saez F. Guiton R. Janny L. Pons-Rejraji H. Alvarez J.G. DNA oxidative damage in mammalian spermatozoa: Where and why is the male nucleus affected? Free Radic. Biol. Med. 2013 65 719 723 10.1016/j.freeradbiomed.2013.07.044 23954469 

  91. 91. Palmer N.O. Fullston T. Mitchell M. Setchell B.P. Lane M. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity Reprod. Fertil. Dev. 2011 23 929 939 10.1071/RD10326 21871212 

  92. 92. Van Gaal L.F. Mertens I.L. de Block C.E. Mechanisms linking obesity with cardiovascular disease Nature 2006 444 875 880 10.1038/nature05487 17167476 

  93. 93. Shimizu I. Yoshida Y. Suda M. Minamino T. DNA damage response and metabolic disease Cell Metab. 2014 20 967 977 10.1016/j.cmet.2014.10.008 25456739 

  94. 94. Vousden K.H. Lane D.P. p53 in health and disease Nat. Rev. Mol. Cell Biol. 2007 8 275 283 10.1038/nrm2147 17380161 

  95. 95. Maier B. Gluba W. Bernier B. Turner T. Mohammad K. Guise T. Sutherland A. Thorner M. Scrable H. Modulation of mammalian life span by the short isoform of p53 Genes Dev. 2004 18 306 319 10.1101/gad.1162404 14871929 

  96. 96. Tyner S.D. Venkatachalam S. Choi J. Jones S. Ghebranious N. Igelmann H. Lu X. Soron G. Cooper B. Brayton C. p53 mutant mice that display early ageing-associated phenotypes Nature 2002 415 45 53 10.1038/415045a 11780111 

  97. 97. Petitjean A. Mathe E. Kato S. Ishioka C. Tavtigian S.V. Hainaut P. Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database Hum. Mutat. 2007 28 622 629 10.1002/humu.20495 17311302 

  98. 98. Ochs-Balcom H.M. Marian C. Nie J. Brasky T.M. Goerlitz D.S. Trevisan M. Edge S.B. Winston J. Berry D.L. Kallakury B.V. Adiposity is associated with p53 gene mutations in breast cancer Breast Cancer Res. Treat. 2015 153 635 645 10.1007/s10549-015-3570-5 26364297 

  99. 99. Minamino T. Orimo M. Shimizu I. Kunieda T. Yokoyama M. Ito T. Nojima A. Nabetani A. Oike Y. Matsubara H. A crucial role for adipose tissue p53 in the regulation of insulin resistance Nat. Med. 2009 15 1082 1087 10.1038/nm.2014 19718037 

  100. 100. Vergoni B. Cornejo P.J. Gilleron J. Djedaini M. Ceppo F. Jacquel A. Bouget G. Ginet C. Gonzalez T. Maillet J. DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes Diabetes 2016 65 3062 3074 10.2337/db16-0014 27388216 

  101. 101. Hinault C. Kawamori D. Liew C.W. Maier B. Hu J. Keller S.R. Mirmira R.G. Scrable H. Kulkarni R.N. Delta40 Isoform of p53 controls beta-cell proliferation and glucose homeostasis in mice Diabetes 2011 60 1210 1222 10.2337/db09-1379 21357466 

  102. 102. Tavana O. Zhu C. Too many breaks (brakes): Pancreatic beta-cell senescence leads to diabetes Cell Cycle 2011 10 2471 2484 10.4161/cc.10.15.16741 21750406 

  103. 103. Castro A.V. Kolka C.M. Kim S.P. Bergman R.N. Obesity, insulin resistance and comorbidities? Mechanisms of association Arq. Bras. Endocrinol. Metabol. 2014 58 600 609 10.1590/0004-2730000003223 25211442 

  104. 104. Al-Aubaidy H.A. Jelinek H.F. Oxidative DNA damage and obesity in type 2 diabetes mellitus Eur. J. Endocrinol. 2011 164 899 904 10.1530/EJE-11-0053 21436346 

  105. 105. Lee S.C. Chan J.C. Evidence for DNA damage as a biological link between diabetes and cancer Chin. Med. J. 2015 128 1543 1548 10.4103/0366-6999.157693 26021514 

  106. 106. Zhang Y. Zhou J. Wang T. Cai L. High level glucose increases mutagenesis in human lymphoblastoid cells Int. J. Biol. Sci. 2007 3 375 379 10.7150/ijbs.3.375 17848982 

  107. 107. Stopper H. Schinzel R. Sebekova K. Heidland A. Genotoxicity of advanced glycation end products in mammalian cells Cancer Lett. 2003 190 151 156 10.1016/S0304-3835(02)00626-2 12565169 

  108. 108. Fukami K. Yamagishi S. Kaifu K. Matsui T. Kaida Y. Ueda S. Takeuchi M. Asanuma K. Okuda S. Telmisartan inhibits AGE-induced podocyte damage and detachment Microvasc. Res. 2013 88 79 83 10.1016/j.mvr.2013.04.006 23648312 

  109. 109. Simone S. Gorin Y. Velagapudi C. Abboud H.E. Habib S.L. Mechanism of oxidative DNA damage in diabetes: Tuberin inactivation and downregulation of DNA repair enzyme 8-oxo-7,8-dihydro-2′-deoxyguanosine-DNA glycosylase Diabetes 2008 57 2626 2636 10.2337/db07-1579 18599524 

  110. 110. Habib S.L. Liang S. Hyperactivation of Akt/mTOR and deficiency in tuberin increased the oxidative DNA damage in kidney cancer patients with diabetes Oncotarget 2014 5 2542 2550 10.18632/oncotarget.1833 24797175 

  111. 111. Xu N. Lao Y. Zhang Y. Gillespie D.A. Akt: A double-edged sword in cell proliferation and genome stability J. Oncol. 2012 2012 951724 10.1155/2012/951724 22481935 

  112. 112. Habib S.L. Phan M.N. Patel S.K. Li D. Monks T.J. Lau S.S. Reduced constitutive 8-oxoguanine-DNA glycosylase expression and impaired induction following oxidative DNA damage in the tuberin deficient Eker rat Carcinogenesis 2003 24 573 582 10.1093/carcin/24.3.573 12663520 

  113. 113. Habib S.L. Molecular mechanism of regulation of OGG1: Tuberin deficiency results in cytoplasmic redistribution of transcriptional factor NF-YA J. Mol. Signal. 2009 4 8 10.1186/1750-2187-4-8 20040097 

  114. 114. Piscitello D. Varshney D. Lilla S. Vizioli M.G. Reid C. Gorbunova V. Seluanov A. Gillespie D.A. Adams P.D. AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11 Oncogene 2018 37 427 438 10.1038/onc.2017.340 28967905 

  115. 115. Merkel P. Khoury N. Bertolotto C. Perfetti R. Insulin and glucose regulate the expression of the DNA repair enzyme XPD Mol. Cell Endocrinol. 2003 201 75 85 10.1016/S0303-7207(02)00432-X 12706296 

  116. 116. Komakula S.S.B. Tumova J. Kumaraswamy D. Burchat N. Vartanian V. Ye H. Dobrzyn A. Lloyd R.S. Sampath H. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue Sci. Rep. 2018 8 14886 10.1038/s41598-018-33151-1 30291284 

  117. 117. Dizdaroglu M. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage Mutat. Res. 2003 531 109 126 10.1016/j.mrfmmm.2003.07.003 14637249 

  118. 118. Dou H. Mitra S. Hazra T.K. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2 J. Biol. Chem. 2003 278 49679 49684 10.1074/jbc.M308658200 14522990 

  119. 119. Vartanian V. Lowell B. Minko I.G. Wood T.G. Ceci J.D. George S. Ballinger S.W. Corless C.L. McCullough A.K. Lloyd R.S. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase Proc. Natl. Acad. Sci. USA 2006 103 1864 1869 10.1073/pnas.0507444103 16446448 

  120. 120. Sampath H. Vartanian V. Rollins M.R. Sakumi K. Nakabeppu Y. Lloyd R.S. 8-Oxoguanine DNA glycosylase (OGG1) deficiency increases susceptibility to obesity and metabolic dysfunction PLoS ONE 2012 7 e51697 10.1371/journal.pone.0051697 23284747 

  121. 121. Bankoglu E.E. Arnold C. Hering I. Hankir M. Seyfried F. Stopper H. Decreased Chromosomal Damage in Lymphocytes of Obese Patients After Bariatric Surgery Sci. Rep. 2018 8 11195 10.1038/s41598-018-29581-6 30046046 

  122. 122. Gavande N.S. VanderVere-Carozza P.S. Hinshaw H.D. Jalal S.I. Sears C.R. Pawelczak K.S. Turchi J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther. 2016 160 65 83 10.1016/j.pharmthera.2016.02.003 26896565 

  123. 123. Turgeon M.O. Perry N.J.S. Poulogiannis G. DNA Damage, Repair, and Cancer Metabolism Front. Oncol. 2018 8 15 10.3389/fonc.2018.00015 29459886 

  124. 124. Lord C.J. Ashworth A. BRCAness revisited Nat. Rev. Cancer 2016 16 110 120 10.1038/nrc.2015.21 26775620 

  125. 125. Chae Y.K. Anker J.F. Carneiro B.A. Chandra S. Kaplan J. Kalyan A. Santa-Maria C.A. Platanias L.C. Giles F.J. Genomic landscape of DNA repair genes in cancer Oncotarget 2016 7 23312 23321 10.18632/oncotarget.8196 27004405 

  126. 126. Chan D.S. Vieira A.R. Aune D. Bandera E.V. Greenwood D.C. McTiernan A. Rosenblatt D.N. Thune I. Vieira R. Norat T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies Ann. Oncol. 2014 25 1901 1914 10.1093/annonc/mdu042 24769692 

  127. 127. Kocarnik J.M. Chan A.T. Slattery M.L. Potter J.D. Meyerhardt J. Phipps A. Nan H. Harrison T. Rohan T.E. Qi L. Relationship of prediagnostic body mass index with survival after colorectal cancer: Stage-specific associations Int. J. Cancer 2016 139 1065 1072 10.1002/ijc.30163 27121247 

  128. 128. Nimptsch K. Pischon T. Body fatness, related biomarkers and cancer risk: An epidemiological perspective Horm. Mol. Biol. Clin. Investig. 2015 22 39 51 10.1515/hmbci-2014-0043 25781710 

  129. 129. Pischon T. Nimptsch K. Obesity and Risk of Cancer: An Introductory Overview Recent Results Cancer Res. 2016 208 1 15 27909899 

  130. 130. Secord A.A. Hasselblad V. von Gruenigen V.E. Gehrig P.A. Modesitt S.C. Bae-Jump V. Havrilesky L.J. Body mass index and mortality in endometrial cancer: A systematic review and meta-analysis Gynecol. Oncol. 2016 140 184 190 10.1016/j.ygyno.2015.10.020 26524722 

  131. 131. The L. The link between cancer and obesity Lancet 2017 390 1716 

  132. 132. Ning Y. Wang L. Giovannucci E.L. A quantitative analysis of body mass index and colorectal cancer: Findings from 56 observational studies Obes. Rev. 2010 11 19 30 10.1111/j.1467-789X.2009.00613.x 19538439 

  133. 133. Colotta F. Allavena P. Sica A. Garlanda C. Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability Carcinogenesis 2009 30 1073 1081 10.1093/carcin/bgp127 19468060 

  134. 134. Fernandez-Sanchez A. Madrigal-Santillan E. Bautista M. Esquivel-Soto J. Morales-Gonzalez A. Esquivel-Chirino C. Durante-Montiel I. Sanchez-Rivera G. Valadez-Vega C. Morales-Gonzalez J.A. Inflammation, oxidative stress, and obesity Int. J. Mol. Sci. 2011 12 3117 3132 10.3390/ijms12053117 21686173 

  135. 135. Jung U.J. Choi M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease Int. J. Mol. Sci. 2014 15 6184 6223 10.3390/ijms15046184 24733068 

  136. 136. Sun B. Karin M. Obesity, inflammation, and liver cancer J. Hepatol. 2012 56 704 713 10.1016/j.jhep.2011.09.020 22120206 

  137. 137. Ramos-Nino M.E. The role of chronic inflammation in obesity-associated cancers ISRN Oncol. 2013 2013 697521 10.1155/2013/697521 23819063 

  138. 138. Riondino S. Roselli M. Palmirotta R. Della-Morte D. Ferroni P. Guadagni F. Obesity and colorectal cancer: Role of adipokines in tumor initiation and progression World J. Gastroenterol. 2014 20 5177 5190 10.3748/wjg.v20.i18.5177 24833848 

  139. 139. Otani K. Ishihara S. Yamaguchi H. Murono K. Yasuda K. Nishikawa T. Tanaka T. Kiyomatsu T. Hata K. Kawai K. Adiponectin and colorectal cancer Surg. Today 2017 47 151 158 10.1007/s00595-016-1334-4 27061803 

  140. 140. Barb D. Pazaitou-Panayiotou K. Mantzoros C.S. Adiponectin: A link between obesity and cancer Expert Opin. Investig. Drugs 2006 15 917 931 10.1517/13543784.15.8.917 16859394 

  141. 141. Stattin P. Lukanova A. Biessy C. Soderberg S. Palmqvist R. Kaaks R. Olsson T. Jellum E. Obesity and colon cancer: Does leptin provide a link? Int. J. Cancer 2004 109 149 152 10.1002/ijc.11668 14735482 

  142. 142. Stattin P. Palmqvist R. Soderberg S. Biessy C. Ardnor B. Hallmans G. Kaaks R. Olsson T. Plasma leptin and colorectal cancer risk: A prospective study in Northern Sweden Oncol. Rep. 2003 10 2015 2021 10.3892/or.10.6.2015 14534736 

  143. 143. Orecchioni S. Reggiani F. Talarico G. Bertolini F. Mechanisms of obesity in the development of breast cancer Discov. Med. 2015 20 121 128 26463093 

  144. 144. Karin M. Greten F.R. NF-kappaB: Linking inflammation and immunity to cancer development and progression Nat. Rev. Immunol. 2005 5 749 759 10.1038/nri1703 16175180 

  145. 145. McCool K.W. Miyamoto S. DNA damage-dependent NF-kappaB activation: NEMO turns nuclear signaling inside out Immunol. Rev. 2012 246 311 326 10.1111/j.1600-065X.2012.01101.x 22435563 

  146. 146. Wang W. Mani A.M. Wu Z.H. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression J. Cancer Metastasis Treat. 2017 3 45 59 10.20517/2394-4722.2017.03 28626800 

  147. 147. Valentino E. Bellazzo A. di Minin G. Sicari D. Apollonio M. Scognamiglio G. di Bonito M. Botti G. del Sal G. Collavin L. Mutant p53 potentiates the oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP Proc. Natl. Acad. Sci. USA 2017 114 7623 7628 10.1073/pnas.1700996114 28667123 

  148. 148. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation Cell 2011 144 646 674 10.1016/j.cell.2011.02.013 21376230 

  149. 149. Macheda M.L. Rogers S. Best J.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer J. Cell Physiol. 2005 202 654 662 10.1002/jcp.20166 15389572 

  150. 150. Koppenol W.H. Bounds P.L. Dang C.V. Otto Warburg’s contributions to current concepts of cancer metabolism Nat. Rev. Cancer 2011 11 325 337 10.1038/nrc3038 21508971 

  151. 151. Levine A.J. Puzio-Kuter A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes Science 2010 330 1340 1344 10.1126/science.1193494 21127244 

  152. 152. Rose D.P. Gracheck P.J. Vona-Davis L. The Interactions of Obesity, Inflammation and Insulin Resistance in Breast Cancer Cancers 2015 7 2147 2168 10.3390/cancers7040883 26516917 

  153. 153. Marnett L.J. Chemistry and biology of DNA damage by malondialdehyde IARC Sci. Publ. 1999 150 17 27 

  154. 154. Voulgaridou G.P. Anestopoulos I. Franco R. Panayiotidis M.I. Pappa A. DNA damage induced by endogenous aldehydes: Current state of knowledge Mutat. Res. 2011 711 13 27 10.1016/j.mrfmmm.2011.03.006 21419140 

  155. 155. Wen C. Wu L. Fu L. Wang B. Zhou H. Unifying mechanism in the initiation of breast cancer by metabolism of estrogen (Review) Mol. Med. Rep. 2017 16 1001 1006 10.3892/mmr.2017.6738 28627646 

  156. 156. Fussell K.C. Udasin R.G. Smith P.J. Gallo M.A. Laskin J.D. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells Carcinogenesis 2011 32 1285 1293 10.1093/carcin/bgr109 21665890 

  157. 157. Yager J.D. Liehr J.G. Molecular mechanisms of estrogen carcinogenesis Annu. Rev. Pharmacol. Toxicol. 1996 36 203 232 10.1146/annurev.pa.36.040196.001223 8725388 

  158. 158. Yasuda M.T. Sakakibara H. Shimoi K. Estrogen- and stress-induced DNA damage in breast cancer and chemoprevention with dietary flavonoid Genes Environ. 2017 39 10 10.1186/s41021-016-0071-7 28163803 

  159. 159. Caldon C.E. Estrogen signaling and the DNA damage response in hormone dependent breast cancers Front. Oncol. 2014 4 106 10.3389/fonc.2014.00106 24860786 

  160. 160. Wysham W.Z. Mhawech-Fauceglia P. Li H. Hays L. Syriac S. Skrepnik T. Wright J. Pande N. Hoatlin M. Pejovic T. BRCAness profile of sporadic ovarian cancer predicts disease recurrence PLoS ONE 2012 7 e30042 10.1371/journal.pone.0030042 22253870 

  161. 161. Mhawech-Fauceglia P. Wang D. Kim G. Sharifian M. Chen X. Liu Q. Lin Y.G. Liu S. Pejovic T. Expression of DNA repair proteins in endometrial cancer predicts disease outcome Gynecol. Oncol. 2014 132 593 598 10.1016/j.ygyno.2014.02.002 24508840 

  162. 162. Godoy H. Mhawech-Fauceglia P. Beck A. Miller A. Lele S. Odunsi K. Expression of poly (adenosine diphosphate-ribose) polymerase and p53 in epithelial ovarian cancer and their role in prognosis and disease outcome Int. J. Gynecol. Pathol. 2011 30 139 144 10.1097/PGP.0b013e3181fa5a64 21293287 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로