$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] InDel markers: An extended marker resource for molecular breeding in chickpea 원문보기

PloS one, v.14 no.3, 2019년, pp.e0213999 -   

Jain, Ankit (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India) ,  Roorkiwal, Manish (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India) ,  Kale, Sandip (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India) ,  Garg, Vanika (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India) ,  Yadala, Ramakrishna (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India) ,  Varshney, Rajeev K. (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India)

Abstract AI-Helper 아이콘AI-Helper

Chickpea is one of the most important food legumes that holds the key to meet rising global food and nutritional demand. In order to deploy molecular breeding approaches in crop improvement programs, user friendly and cost effective marker resources remain prerequisite. The advent of next generation...

참고문헌 (47)

  1. 1 Varshney RK , Song C , Saxena RK , Azam S , Yu S , Sharpe AG , et al Draft genome sequence of chickpea ( Cicer arietinum ) provides a resource for trait improvement . Nat. Biotechnol . 2013 ; 31 : 240 – 246 . 10.1038/nbt.2491 23354103 

  2. 2 Croser JS , Ahmad F , Clarke HJ , Siddique KHM . Utilisation of wild Cicer in chickpea improvement—progress, constraints, and prospects . Crop Pasture Sci . 2003 ; 54 : 429 – 444 . 

  3. 3 Jukanti AK , Gaur PM , Gowda CLL , Chibbar RN . Nutritional quality and health benefits of chickpea ( Cicer arietinum L.): a review . Br. J. Nutr . 2012 ; 108 : S12 – S26 . 

  4. 4 Gan Y , Johnston AM , Diane Knight J , McDonald C , Stevenson C . Nitrogen dynamics of chickpea: Effects of cultivar choice, N fertilization, Rhizobium inoculation, and cropping systems . Can. J. Plant Sci . 2010 ; 90 : 655 – 666 . 

  5. 5 Saraf CS , Rupela OP , Hegde DM , Yadav RL , Shivkumar BG , Bhattarai S , et al Biological nitrogen fixation and residual effects of winter grain legumes in rice and wheat cropping systems of the Indo-Gangetic Plain In: Residual effects of legumes in rice and wheat cropping systems of the Indo-Gangetic plain , Kumar Rao JVDK , Johansen C , and Rego TJ , Eds., Oxford & IBH Publishing Co Pvt Ltd , New Delhi ; 1998 ; pp. 14 – 30 . 

  6. 6 Ramirez ML , Cendoya E , Nichea MJ , Zachetti VGL , Chulze SN . Impact of toxigenic fungi and mycotoxins in chickpea: a review . Curr. Opin. Food Sci . 2018 ; 23 : 32 – 37 . 

  7. 7 Kashiwagi J , Krishnamurthy L , Purushothaman R , Upadhyaya HD , Gaur PM , Gowda CLL , et al Scope for improvement of yield under drought through the root traits in chickpea ( Cicer arietinum L.) . Field Crops Res . 2015 ; 170 : 47 – 54 . 

  8. 8 Varshney RK , Graner A , Sorrells ME . Genomics-assisted breeding for crop improvement . Trends Plant Sci . 2005 ; 10 : 621 – 630 . 10.1016/j.tplants.2005.10.004 16290213 

  9. 9 Kole C , Muthamilarasan M , Henry R , Edwards D , Sharma R , Abberton M , et al Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects . Front. Plant Sci . 2015 ; 6 : 563 10.3389/fpls.2015.00563 26322050 

  10. 10 Roorkiwal M , Jain A , Thudi M , Varshney RK . Advances in Chickpea Genomic Resources for Accelerating the Crop Improvement In: The Chickpea Genome , Varshney et al (eds.), Springer International Publishing 2017 pp. 53 – 68 . 

  11. 11 Vasemägi A , Gross R , Palm D , Paaver T , Primmer CR . Discovery and application of insertion-deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon . BMC Genomics 2010 ; 11 : 156 10.1186/1471-2164-11-156 20210987 

  12. 12 Lovett ST . Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences . Mol. Microbiol . 2004 ; 52 : 1243 – 1253 . 10.1111/j.1365-2958.2004.04076.x 15165229 

  13. 13 Mullaney JM , Mills RE , Pittard WS , Devine SE . Small insertions and deletions (INDELs) in human genomes . Human Mol. Genet . 2010 ; 19 : R131 – R136 . 20858594 

  14. 14 Terakami S , Matsumura Y , Kurita K , Kanamori H , Katayose Y , Yamamoto T , et al Complete sequence of the chloroplast genome from pear ( Pyrus pyrifolia ): genome structure and comparative analysis . Tree Genet. Genomes 2012 ; 8 : 841 – 854 . 

  15. 15 Rockah-Shmuel L , Tóth-Petróczy Á , Sela A , Wurtzel O , Sorek R , Tawfik DS . Correlated occurrence and bypass of frame-shifting insertion-deletions (InDels) to give functional proteins . PLoS Genet . 2013 ; 9 : e1003882 10.1371/journal.pgen.1003882 24204297 

  16. 16 Newman TL , Tuzun E , Morrison VA , Hayden KE , Ventura M , McGrath SD , et al A genome-wide survey of structural variation between human and chimpanzee . Genome Res . 2005 ; 15 : 1344 – 1356 . 10.1101/gr.4338005 16169929 

  17. 17 Mills RE , Luttig CT , Larkins CE , Beauchamp A , Tsui C , Pittard WS , et al An initial map of insertion and deletion (INDEL) variation in the human genome . Genome Res . 2006 ; 16 : 1182 – 1190 . 10.1101/gr.4565806 16902084 

  18. 18 Wu DH , Wu HP , Wang CS , Tseng HY , Hwu KK . Genome-wide InDel marker system for application in rice breeding and mapping studies . Euphytica 2013 ; 192 : 131 – 143 . 

  19. 19 Păcurar DI , Păcurar ML , Street N , Bussell JD , Pop TI , Gutierrez L , et al A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions . J. Exp. Bot . 2012 ; 63 : 2491 – 2501 . 10.1093/jxb/err422 22282537 

  20. 20 Zhou G , Zhang Q , Tan C , Zhang X , Li C . Development of genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map . BMC Genomics 2015 ; 16 : 804 10.1186/s12864-015-2027-x 26474969 

  21. 21 Yang J , Wang Y , Shen H , Yang W . In silico identification and experimental validation of insertion-deletion polymorphisms in tomato genome . DNA Res . 2014 ; 21 : 429 – 438 . 10.1093/dnares/dsu008 24618211 

  22. 22 Li W , Cheng J , Wu Z , Qin C , Tan S , Tang X , et al An InDel-based linkage map of hot pepper ( Capsicum annuum ) . Mol. Breed . 2015 ; 35 : 32 10.1007/s11032-015-0219-3 25620878 

  23. 23 Moghaddam SM , Song Q , Mamidi S , Schmutz J , Lee R , Cregan P , et al Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L . Front. Plant Sci . 2014 ; 5 : 185 10.3389/fpls.2014.00185 24860578 

  24. 24 Liu B , Wang Y , Zhai W , Deng J , Wang H , Cui Y , et al Development of InDel markers for Brassica rapa based on whole-genome re-sequencing . Theor. Appl. Genet . 2013 ; 126 : 231 – 239 . 10.1007/s00122-012-1976-6 22972202 

  25. 25 Wu K , Yang M , Liu H , Tao Y , Mei J , Zhao Y . Genetic analysis and molecular characterization of Chinese sesame ( Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers . BMC Genet . 2014 ; 15 : 35 10.1186/1471-2156-15-35 24641723 

  26. 26 Jain M , Misra G , Patel RK , Priya P , Jhanwar S , Khan AW , et al A draft genome sequence of the pulse crop chickpea ( Cicer arietinum L.) . Plant J . 2013 ; 74 : 715 – 729 . 10.1111/tpj.12173 23489434 

  27. 27 Gupta S , Nawaz K , Parween S , Roy R , Sahu K , Kumar Pole A , et al Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement . DNA Res . 2016 ; 24 : 1 – 10 . 

  28. 28 Thudi M , Khan AW , Kumar V , Gaur PM , Katta K , Garg V , et al Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea ( Cicer arietinum L.) . BMC Plant Biol . 2016 ; 16 : 10 10.1186/s12870-015-0690-3 26822060 

  29. 29 Thudi M , Chitikineni A , Liu X , He W , Roorkiwal M , Yang W , et al Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea ( Cicer arietinum L.) . Sci. Rep . 2016 ; 6 : 38636 10.1038/srep38636 27982107 

  30. 30 Cuc LM , Mace ES , Crouch JH , Quang VD , Long TD , Varshney RK . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut ( Arachis hypogaea ) . BMC Plant Biol . 2008 ; 8 : 55 10.1186/1471-2229-8-55 18482440 

  31. 31 Li H , Durbin R . Fast and accurate short read alignment with Burrows-Wheeler Transform . Bioinformatics 2009 ; 25 : 1754 – 1760 . 10.1093/bioinformatics/btp324 19451168 

  32. 32 Albers CA , Lunter G , MacArthur DG , McVean G , Ouwehand WH , Durbin R . Dindel: accurate indel calls from short-read data . Genome Res . 2011 ; 21 : 961 – 973 . 10.1101/gr.112326.110 20980555 

  33. 33 Rozen S , Skaletsky H . Primer3 on the WWW for general users and for biologist programmers . Methods Mol. Biol . 2000 ; 132 : 365 – 386 . 10547847 

  34. 34 Varshney RK , Gaur PM , Chamarthi SK , Krishnamurthy L , Tripathi S , Kashiwagi J , et al Fast-track introgression of QTL-hotspot for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea . Plant Genome 2013 ; 6 : 1 – 9 10.3835/plantgenome2013.07.0022 

  35. 35 Varshney RK , Mohan SM , Gaur PM , Chamarthi SK , Singh VK , Samineni S , et al Marker-assisted backcrossing to introgress resistance to Fusarium wilt (FW) race 1 and Ascochyta blight (AB) in C 214, an elite cultivar of chickpea . Plant Genome 2014 ; 7 : 1 – 11 10.3835/plantgenome2013.10.0035 

  36. 36 Pratap A , Chaturvedi SK , Tomar R , Rajan N , Malviya N , Thudi M , et al Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea . Mol. Genet. Genomics 2017 ; 292 : 1237 – 1245 . 10.1007/s00438-017-1343-z 28668975 

  37. 37 Roorkiwal M , Rathore A , Das RR , Singh MK , Jain A , Srinivasan S , et al Genome-enabled prediction models for yield related traits in chickpea . Front. Plant Sci . 2016 ; 7 : 1666 10.3389/fpls.2016.01666 27920780 

  38. 38 Roorkiwal M , Jarquin D , Singh MK , Gaur PM , Bharadwaj C , Rathore A , et al Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea . Sci. Rep . 2018 ; 8 : 11701 10.1038/s41598-018-30027-2 30076340 

  39. 39 Das S , Upadhyaya HD , Srivastava R , Bajaj D , Gowda CLL , Sharma S , et al Genome-wide insertion–deletion (InDel) marker discovery and genotyping for genomics-assisted breeding applications in chickpea . DNA Res . 2015 ; 22 : 377 – 386 . 10.1093/dnares/dsv020 26385353 

  40. 40 Srivastava R , Singh M , Bajaj D , Parida SK . A high-resolution InDel (insertion–deletion) markers-anchored consensus genetic map identifies major QTLs governing pod number and seed yield in chickpea . Front. Plant Sci . 2016 ; 7 : 1362 10.3389/fpls.2016.01362 27695461 

  41. 41 Ridge S , Deokar A , Lee R , Daba K , Macknight RC , Weller JL , et al The chickpea early flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3 . Plant Physiol . 2017 175 : 802 – 815 10.1104/pp.17.00082 28818860 

  42. 42 Roorkiwal M , Jain A , Kale SM , Doddamani D , Chitikineni A , Thudi M , et al Development and evaluation of high density SNP array ( Axiom CicerSNP Array) for high resolution genetic mapping and breeding applications in chickpea . Plant Biotechnol. J . 2018 ; 16 : 890 – 901 . 10.1111/pbi.12836 28913885 

  43. 43 Varshney RK , Thudi M , Nayak SN , Gaur PM , Kashiwagi J , Krishnamurthy L , et al Genetic dissection of drought tolerance in chickpea ( Cicer arietinum L.) . Theor. Appl. Genet . 2014 ; 127 : 445 – 462 . 10.1007/s00122-013-2230-6 24326458 

  44. 44 Jaganathan D , Thudi M , Kale S , Azam S , Roorkiwal M , Gaur PM , et al Genotyping-by-sequencing based intra-specific genetic map refines a “ QTL-hotspot ” region for drought tolerance in chickpea . Mol. Gen. Genomics 2015 ; 290 : 559 – 571 . 

  45. 45 Salathia N , Lee HN , Sangster TA , Morneau K , Landry CR , Schellenberg K , et al Indel arrays: an affordable alternative for genotyping . Plant J . 2007 ; 51 : 727 – 737 . 10.1111/j.1365-313X.2007.03194.x 17645438 

  46. 46 Hou X , Li L , Peng Z , Wei B , Tang S , Ding M , et al A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis . Plant J . 2010 ; 63 : 880 – 888 . 10.1111/j.1365-313X.2010.04277.x 20561258 

  47. 47 Jiang J , Gao Y , Hou Y , Li W , Zhang S , Zhang Q , et al Whole-genome resequencing of Holstein bulls for Indel discovery and identification of genes associated with milk composition traits in dairy cattle . PloS One 2016 ; 11 : e0168946 10.1371/journal.pone.0168946 28030618 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로