$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The P2X7 receptor: a new therapeutic target in Alzheimer’s disease

Expert opinion on therapeutic targets, v.23 no.3, 2019년, pp.165 - 176  

Illes, Peter (Rudolf-Boehm-Institut fü) ,  Rubini, Patrizia (r Pharmakologie und Toxikologie, Universitä) ,  Huang, Lumei (t Leipzig, Leipzig, Germany) ,  Tang, Yong (Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China)

초록이 없습니다.

참고문헌 (165)

  1. Burnstock, Geoffrey, Krügel, Ute, Abbracchio, Maria P., Illes, Peter. Purinergic signalling: From normal behaviour to pathological brain function. Progress in neurobiology, vol.95, no.2, 229-274.

  2. Bartlett, Rachael, Stokes, Leanne, Sluyter, Ronald. The P2X7 Receptor Channel: Recent Developments and the Use of P2X7 Antagonists in Models of Disease. Pharmacological reviews, vol.66, no.3, 638-675.

  3. 10.2174/0929867321666140706130415 

  4. Sperlagh, B., Illes, P.. P2X7 receptor: an emerging target in central nervous system diseases. Trends in pharmacological sciences, vol.35, no.10, 537-547.

  5. Krugel, U.. Purinergic receptors in psychiatric disorders. Neuropharmacology, vol.104, 212-225.

  6. Miras-Portugal, M.T., Gomez-Villafuertes, R., Gualix, J., Diaz-Hernandez, J.I., Artalejo, A.R., Ortega, F., Delicado, E.G., Perez-Sen, R.. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology, vol.104, 243-254.

  7. Correa-Velloso, J.C., Goncalves, M.C., Naaldijk, Y., Oliveira-Giacomelli, A., Pillat, M.M., Ulrich, H.. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Progress in neuro-psychopharmacology & biological psychiatry, vol.80, no.1, 34-53.

  8. North, R. Alan. Molecular Physiology of P2X Receptors. Physiological reviews, vol.82, no.4, 1013-1067.

  9. Illes, Peter, Alexandre Ribeiro, J.. Molecular physiology of P2 receptors in the central nervous system. European journal of pharmacology, vol.483, no.1, 5-17.

  10. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A., Buell, G.. The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2X7). Science, vol.272, no.5262, 735-738.

  11. Philos Trans R Soc Lond B Biol Sci North RA 371:1700 2016 

  12. Costa-Junior, Helio Miranda, Sarmento Vieira, Flávia, Coutinho-Silva, Robson. C terminus of the P2X7 receptor: treasure hunting. Purinergic signalling, vol.7, no.1, 7-19.

  13. Khakh, Baljit S., Bao, Xiaoyan R., Labarca, Cesar, Lester, Henry A.. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nature neuroscience, vol.2, no.4, 322-330.

  14. Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A., Surprenant, A.. Pore dilation of neuronal P2X receptor channels. Nature neuroscience, vol.2, no.4, 315-321.

  15. Harkat, Mahboubi, Peverini, Laurie, Cerdan, Adrien H., Dunning, Kate, Beudez, Juline, Martz, Adeline, Calimet, Nicolas, Specht, Alexandre, Cecchini, Marco, Chataigneau, Thierry, Grutter, Thomas. On the permeation of large organic cations through the pore of ATP-gated P2X receptors. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.19, E3786-E3795.

  16. Peverini, Laurie, Beudez, Juline, Dunning, Kate, Chataigneau, Thierry, Grutter, Thomas. New Insights Into Permeation of Large Cations Through ATP-Gated P2X Receptors. Frontiers in molecular neuroscience, vol.11, 265-.

  17. Li, Mufeng, Toombes, Gilman E S, Silberberg, Shai D, Swartz, Kenton J. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nature neuroscience, vol.18, no.11, 1577-1583.

  18. Pippel, Anja, Stolz, Michaela, Woltersdorf, Ronja, Kless, Achim, Schmalzing, Gunther, Markwardt, Fritz. Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.11, E2156-E2165.

  19. Di Virgilio, Francesco, Schmalzing, Günther, Markwardt, Fritz. The Elusive P2X7 Macropore. Trends in cell biology, vol.28, no.5, 392-404.

  20. Pelegrin, Pablo, Surprenant, Annmarie. Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. The EMBO journal, vol.25, no.21, 5071-5082.

  21. Hanley, Peter J., Kronlage, Moritz, Kirschning, Carsten, del Rey, Adriana, Di Virgilio, Francesco, Leipziger, Jens, Chessell, Iain P., Sargin, Sarah, Filippov, Mikhail A., Lindemann, Otto, Mohr, Simon, Königs, Volker, Schillers, Hermann, Bähler, Martin, Schwab, Albrecht. Transient P2X7 Receptor Activation Triggers Macrophage Death Independent of Toll-like Receptors 2 and 4, Caspase-1, and Pannexin-1 Proteins. The Journal of biological chemistry, vol.287, no.13, 10650-10663.

  22. Alberto, A. V. P., Faria, R. X., Couto, C. G. C., Ferreira, L. G. B., Souza, C. A. M., Teixeira, P. C. N., Fróes, M. M., Alves, L. A.. Is pannexin the pore associated with the P2X7 receptor?. Naunyn-Schmiedeberg's archives of pharmacology, vol.386, no.9, 775-787.

  23. Kawate, Toshimitsu, Michel, Jennifer Carlisle, Birdsong, William T., Gouaux, Eric. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature, vol.460, no.7255, 592-598.

  24. Hattori, Motoyuki, Gouaux, Eric. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature, vol.485, no.7397, 207-212.

  25. Karasawa, Akira, Michalski, Kevin, Mikhelzon, Polina, Kawate, Toshimitsu. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife, vol.6, e31186-.

  26. Kasuya, Go, Yamaura, Toshiaki, Ma, Xiao-Bo, Nakamura, Ryoki, Takemoto, Mizuki, Nagumo, Hiromitsu, Tanaka, Eiichi, Dohmae, Naoshi, Nakane, Takanori, Yu, Ye, Ishitani, Ryuichiro, Matsuzaki, Osamu, Hattori, Motoyuki, Nureki, Osamu. Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nature communications, vol.8, no.1, 876-.

  27. Chen, Shih-Pin, Qin, Tao, Seidel, Jessica L., Zheng, Yi, Eikermann, Matthias, Ferrari, Michel D., van den Maagdenberg, Arn M. J. M., Moskowitz, Michael A., Ayata, Cenk, Eikermann-Haerter, Katharina. Inhibition of the P2X7-PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain : a journal of neurology, vol.140, no.6, 1643-1656.

  28. Beamer, E., Goloncser, F., Horvath, G., Beko, K., Otrokocsi, L., Kovanyi, B., Sperlagh, B.. Purinergic mechanisms in neuroinflammation: An update from molecules to behavior. Neuropharmacology, vol.104, 94-104.

  29. Di Virgilio, Francesco, Dal Ben, Diego, Sarti, Alba Clara, Giuliani, Anna Lisa, Falzoni, Simonetta. The P2X7 Receptor in Infection and Inflammation. Immunity, vol.47, no.1, 15-31.

  30. Savio, Luiz E. B., de Andrade Mello, Paola, da Silva, Cleide Gonçalves, Coutinho-Silva, Robson. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?. Frontiers in pharmacology, vol.9, 52-.

  31. Wei, Linyu, Syed Mortadza, Sharifah A, Yan, Jing, Zhang, Libin, Wang, Lu, Yin, Yaling, Li, Chaokun, Chalon, Sylvie, Emond, Patrick, Belzung, Catherine, Li, Dongliang, Lu, Chengbiao, Roger, Sebastien, Jiang, Lin-Hua. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neuroscience and biobehavioral reviews, vol.87, 192-205.

  32. Young, Chris N. J., Górecki, Dariusz C.. P2RX7 Purinoceptor as a Therapeutic Target—The Second Coming?. Frontiers in chemistry, vol.6, 248-.

  33. Bhattacharya, Anindya, Jones, Declan N.C. Emerging role of the P2X7-NLRP3-IL1β pathway in mood disorders. Psychoneuroendocrinology, vol.98, 95-100.

  34. Ann Transl Med Wang WY 136 3 10 2015 

  35. Solle, Mike, Labasi, Jeff, Perregaux, David G., Stam, Ethan, Petrushova, Nina, Koller, Beverly H., Griffiths, Richard J., Gabel, Christopher A.. Altered Cytokine Production in Mice Lacking P2X7Receptors. The Journal of biological chemistry, vol.276, no.1, 125-132.

  36. Giuliani, Anna Lisa, Sarti, Alba C., Falzoni, Simonetta, Di Virgilio, Francesco. The P2X7 Receptor-Interleukin-1 Liaison. Frontiers in pharmacology, vol.8, 123-.

  37. Munoz-Planillo, R., Kuffa, P., Martinez-Colon, G., Smith, Brenna L., Rajendiran, Thekkelnaycke M., Nunez, G.. K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, vol.38, no.6, 1142-1153.

  38. Di, Anke, Xiong, Shiqin, Ye, Zhiming, Malireddi, R.K. Subbarao, Kometani, Satoshi, Zhong, Ming, Mittal, Manish, Hong, Zhigang, Kanneganti, Thirumala-Devi, Rehman, Jalees, Malik, Asrar B.. The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity, vol.49, no.1, 56-65.e4.

  39. Weisman, Gary A., Camden, Jean M., Peterson, Troy S., Ajit, Deepa, Woods, Lucas T., Erb, Laurie. P2 Receptors for Extracellular Nucleotides in the Central Nervous System: Role of P2X7 and P2Y2 Receptor Interactions in Neuroinflammation. Molecular neurobiology, vol.46, no.1, 96-113.

  40. Illes, Peter, Khan, Tahir Muhammad, Rubini, Patrizia. Neuronal P2X7 Receptors Revisited: Do They Really Exist?. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.37, no.30, 7049-7062.

  41. Miras-Portugal, M. Teresa, SebastiÁán-Serrano, Álvaro, de Diego GarcÁáía, Laura, DÁáííaz-HernÁáííández, Miguel. Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.37, no.30, 7063-7072.

  42. Nörenberg, W, Schunk, J, Fischer, W, Sobottka, H, Riedel, T, Oliveira, JF, Franke, H, Illes, P. Electrophysiological classification of P2X7 receptors in rat cultured neocortical astroglia. British journal of pharmacology : BJP, vol.160, no.8, 1941-1952.

  43. Oliveira, João Filipe, Riedel, Thomas, Leichsenring, Anna, Heine, Claudia, Franke, Heike, Krügel, Ute, Nörenberg, Wolfgang, Illes, Peter. Rodent Cortical Astroglia Express In Situ Functional P2X7 Receptors Sensing Pathologically High ATP Concentrations. Cerebral cortex, vol.21, no.4, 806-820.

  44. Illes, Peter, Verkhratsky, Alexei, Burnstock, Geoffrey, Franke, Heike. P2X Receptors and Their Roles in Astroglia in the Central and Peripheral Nervous System. The neuroscientist, vol.18, no.5, 422-438.

  45. Jimenez-Pacheco, Alba, Diaz-Hernandez, Miguel, Arribas-Blázquez, Marina, Sanz-Rodriguez, Amaya, Olivos-Oré, Luis A., Artalejo, Antonio R., Alves, Mariana, Letavic, Michael, Miras-Portugal, M. Teresa, Conroy, Ronan M., Delanty, Norman, Farrell, Michael A., O'Brien, Donncha F., Bhattacharya, Anindya, Engel, Tobias, Henshall, David C.. Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.36, no.22, 5920-5932.

  46. Metzger, Michael W., Walser, Sandra M., Aprile-Garcia, Fernando, Dedic, Nina, Chen, Alon, Holsboer, Florian, Arzt, Eduardo, Wurst, Wolfgang, Deussing, Jan M.. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic signalling, vol.13, no.2, 153-170.

  47. Deussing, Jan M., Arzt, Eduardo. P2X7 Receptor: A Potential Therapeutic Target for Depression?. Trends in molecular medicine, vol.24, no.9, 736-747.

  48. Khan, Muhammad Tahir, Deussing, Jan, Tang, Yong, Illes, Peter. Astrocytic rather than neuronal P2X7 receptors modulate the function of the tri-synaptic network in the rodent hippocampus. Brain research bulletin, vol.151, 164-173.

  49. Elife Kaczmarek-Hajek K 7:e36217 2018 

  50. Götz, Jürgen, Bodea, Liviu-Gabriel, Goedert, Michel. Rodent models for Alzheimer disease. Nature reviews. Neuroscience, vol.19, no.10, 583-598.

  51. dos Santos Picanco, Leide Caroline, Ozela, Priscilla F., de Fatima de Brito Brito, Maiara, Pinheiro, Abraao A., Padilha, Elias C., Braga, Francinaldo S., de Paula da Silva, Carlos Henrique Tomich, dos Santos, Cleydson Breno Rodrigues, Rosa, Joaquín M.C., da Silva Hage-Melim, Lorane Izabel. Alzheimer's Disease: A Review from the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment. Current medicinal chemistry, vol.25, no.26, 3141-3159.

  52. Wingo, Thomas S, Lah, James J, Levey, Allan I, Cutler, David J. Autosomal recessive causes likely in early-onset Alzheimer disease.. Archives of neurology, vol.69, no.1, 59-64.

  53. Cacace, R., Sleegers, K., Van Broeckhoven, C.. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimer's & dementia : the journal of the Alzheimer's Association, vol.12, no.6, 733-748.

  54. Hardy, John, Selkoe, Dennis J.. The Amyloid Hypothesis of Alzheimer's Disease: Progress and Problems on the Road to Therapeutics. Science, vol.297, no.5580, 353-356.

  55. Hunter, Sally, Smailagic, Nadja, Brayne, Carol. Aβ and the dementia syndrome: Simple versus complex perspectives. European journal of clinical investigation, vol.48, no.12, e13025-.

  56. Ortega, Fernando, Stott, Jonathan, Visser, Sandra A. G., Bendtsen, Claus. Interplay between α-, β-, and γ-Secretases Determines Biphasic Amyloid-β Protein Level in the Presence of a γ-Secretase Inhibitor. The Journal of biological chemistry, vol.288, no.2, 785-792.

  57. Caillé, Isabelle, Allinquant, Bernadette, Dupont, Edmond, Bouillot, Colette, Langer, Andreas, Müller, Ulrike, Prochiantz, Alain. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development, vol.131, no.9, 2173-2181.

  58. Ferreira, Sergio T., Lourenco, Mychael V., Oliveira, Mauricio M., De Felice, Fernanda G.. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Frontiers in cellular neuroscience, vol.9, 191-.

  59. Denver, Paul, McClean, Paula L.. Distinguishing normal brain aging from the development of Alzheimer's disease: inflammation, insulin signaling and cognition. Neural regeneration research : NRR, vol.13, no.10, 1719-1730.

  60. Zhang, Gang, Beati, Hamze, Nilsson, Jakob, Wodarz, Andreas. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region. PloS one, vol.8, no.4, e60596-.

  61. Ferrer, Isidre, López-González, Irene, Carmona, Margarita, Arregui, Laura, Dalfó, Esther, Torrejón-Escribano, Benjamin, Diehl, Roberta, Kovacs, Gabor G.. Glial and Neuronal Tau Pathology in Tauopathies : Characterization of Disease-Specific Phenotypes and Tau Pathology Progression. Journal of neuropathology and experimental neurology, vol.73, no.1, 81-97.

  62. Bratisl Lek Listy Pohanka M 535 119 9 2018 

  63. Johnson, Gail V. W., Stoothoff, William H.. Tau phosphorylation in neuronal cell function and dysfunction. Journal of cell science, vol.117, no.24, 5721-5729.

  64. Congdon, Erin E., Sigurdsson, Einar M.. Tau-targeting therapies for Alzheimer disease. Nature reviews. Neurology, vol.14, no.7, 399-415.

  65. Selkoe, Dennis J., Wolfe, Michael S.. Presenilin: Running with Scissors in the Membrane. Cell, vol.131, no.2, 215-221.

  66. Reitz, C., Mayeux, R.. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical pharmacology, vol.88, no.4, 640-651.

  67. Malek-Ahmadi, Michael, Perez, Sylvia E., Chen, Kewei, Mufson, Elliott J.. Neuritic and Diffuse Plaque Associations with Memory in Non-Cognitively Impaired Elderly. Journal of Alzheimer's disease, vol.53, no.4, 1641-1652.

  68. Ginhoux, Florent, Greter, Melanie, Leboeuf, Marylene, Nandi, Sayan, See, Peter, Gokhan, Solen, Mehler, Mark F., Conway, Simon J., Ng, Lai Guan, Stanley, E. Richard, Samokhvalov, Igor M., Merad, Miriam. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, vol.330, no.6005, 841-845.

  69. Salter, Michael W, Stevens, Beth. Microglia emerge as central players in brain disease. Nature medicine, vol.23, no.9, 1018-1027.

  70. Davalos, Dimitrios, Grutzendler, Jaime, Yang, Guang, Kim, Jiyun V, Zuo, Yi, Jung, Steffen, Littman, Dan R, Dustin, Michael L, Gan, Wen-Biao. ATP mediates rapid microglial response to local brain injury in vivo. Nature neuroscience, vol.8, no.6, 752-758.

  71. Schafer, Dorothy P., Lehrman, Emily K., Kautzman, Amanda G., Koyama, R., Mardinly, Alan R., Yamasaki, R., Ransohoff, Richard M., Greenberg, Michael E., Barres, Ben A., Stevens, B.. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron, vol.74, no.4, 691-705.

  72. Keren-Shaul, Hadas, Spinrad, Amit, Weiner, Assaf, Matcovitch-Natan, Orit, Dvir-Szternfeld, Raz, Ulland, Tyler K., David, Eyal, Baruch, Kuti, Lara-Astaiso, David, Toth, Beata, Itzkovitz, Shalev, Colonna, Marco, Schwartz, Michal, Amit, Ido. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell, vol.169, no.7, 1276-1290.e17.

  73. Deczkowska, Aleksandra, Keren-Shaul, Hadas, Weiner, Assaf, Colonna, Marco, Schwartz, Michal, Amit, Ido. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell, vol.173, no.5, 1073-1081.

  74. Real-Time In Vivo Imaging Reveals the Ability of Monocytes to Clear Vascular Amyloid Beta. Cell reports, vol.5, no.3, 646-653.

  75. Zhao, Yingjun, Wu, Xilin, Li, Xiaoguang, Jiang, Lu-Lin, Gui, Xun, Liu, Yan, Sun, Yu, Zhu, Bing, Piña-Crespo, Juan C., Zhang, Muxian, Zhang, Ningyan, Chen, Xiaochun, Bu, Guojun, An, Zhiqiang, Huang, Timothy Y., Xu, Huaxi. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron, vol.97, no.5, 1023-1031.e7.

  76. Heppner, Frank L., Ransohoff, Richard M., Becher, Burkhard. Immune attack: the role of inflammation in Alzheimer disease. Nature reviews. Neuroscience, vol.16, no.6, 358-372.

  77. Navarro, Victoria, Sanchez-Mejias, Elisabeth, Jimenez, Sebastian, Muñoz-Castro, Clara, Sanchez-Varo, Raquel, Davila, Jose C., Vizuete, Marisa, Gutierrez, Antonia, Vitorica, Javier. Microglia in Alzheimer’s Disease: Activated, Dysfunctional or Degenerative. Frontiers in aging neuroscience, vol.10, 140-.

  78. Hong, Soyon, Beja-Glasser, Victoria F., Nfonoyim, Bianca M., Frouin, Arnaud, Li, Shaomin, Ramakrishnan, Saranya, Merry, Katherine M., Shi, Qiaoqiao, Rosenthal, Arnon, Barres, Ben A., Lemere, Cynthia A., Selkoe, Dennis J., Stevens, Beth. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, vol.352, no.6286, 712-716.

  79. Song, Wilbur M., Colonna, Marco. The identity and function of microglia in neurodegeneration. Nature immunology, vol.19, no.10, 1048-1058.

  80. Sperlágh, Beáta, Illes, Peter. Purinergic modulation of microglial cell activation. Purinergic signalling, vol.3, no.1, 117-127.

  81. 10.1101/cshperspect.a006346 

  82. Sofroniew, Michael V., Vinters, Harry V.. Astrocytes: biology and pathology. Acta neuropathologica, vol.119, no.1, 7-35.

  83. Jagust, William. Imaging the evolution and pathophysiology of Alzheimer disease. Nature reviews. Neuroscience, vol.19, no.11, 687-700.

  84. Keshavan, Ashvini, Heslegrave, Amanda, Zetterberg, Henrik, Schott, Jonathan M.. Blood Biomarkers for Alzheimer’s Disease: Much Promise, Cautious Progress. Molecular diagnosis & therapy, vol.21, no.1, 13-22.

  85. Nakamura, Akinori, Kaneko, Naoki, Villemagne, Victor L., Kato, Takashi, Doecke, James, Doré, Vincent, Fowler, Chris, Li, Qiao-Xin, Martins, Ralph, Rowe, Christopher, Tomita, Taisuke, Matsuzaki, Katsumi, Ishii, Kenji, Ishii, Kazunari, Arahata, Yutaka, Iwamoto, Shinichi, Ito, Kengo, Tanaka, Koichi, Masters, Colin L., Yanagisawa, Katsuhiko. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature, vol.554, no.7691, 249-254.

  86. Parvathenani, Lav K., Tertyshnikova, Svetlana, Greco, Corinne R., Roberts, Susan B., Robertson, Barbara, Posmantur, Rand. P2X7 Mediates Superoxide Production in Primary Microglia and Is Up-regulated in a Transgenic Mouse Model of Alzheimer's Disease. The Journal of biological chemistry, vol.278, no.15, 13309-13317.

  87. Kim, Soo Yoon, Moon, Ju Hyun, Lee, Hwan Goo, Kim, Seung Up, Lee, Yong Beom. ATP released from β‐amyloid-stimulated microglia induces reactive oxygen species production in an autocrine fashion. Experimental & molecular medicine : EMM, vol.39, no.6, 820-827.

  88. Ryu, Jae K., McLarnon, James G.. Block of purinergic P2X7 receptor is neuroprotective in an animal model of Alzheimer’s disease. Neuroreport, vol.19, no.17, 1715-1719.

  89. Ryu, Jae K., McLarnon, James G.. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiology of disease, vol.29, no.2, 254-266.

  90. McLarnon, James G., Ryu, Jae K., Walker, Douglas G., Choi, Hyun B.. Upregulated Expression of Purinergic P2X7Receptor in Alzheimer Disease and Amyloid-β Peptide-Treated Microglia and in Peptide-Injected Rat Hippocampus. Journal of neuropathology and experimental neurology, vol.65, no.11, 1090-1097.

  91. Chen, X., Hu, J., Jiang, L., Xu, S., Zheng, B., Wang, C., Zhang, J., Wei, X., Chang, L., Wang, Q.. Brilliant Blue G improves cognition in an animal model of Alzheimer's disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience, vol.279, 94-101.

  92. Lacor, Pascale N., Buniel, Maria C., Furlow, Paul W., Sanz Clemente, Antonio, Velasco, Pauline T., Wood, Margaret, Viola, Kirsten L., Klein, William L.. Aβ Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer's Disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.27, no.4, 796-807.

  93. Li, Shaomin, Jin, Ming, Koeglsperger, Thomas, Shepardson, Nina E., Shankar, Ganesh M., Selkoe, Dennis J.. Soluble Aβ Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.31, no.18, 6627-6638.

  94. Chen, X., Lin, R., Chang, L., Xu, S., Wei, X., Zhang, J., Wang, C., Anwyl, R., Wang, Q.. Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3. Neuroscience, vol.253, 435-443.

  95. Sanz, Juana M., Chiozzi, Paola, Ferrari, Davide, Colaianna, Marilena, Idzko, Marco, Falzoni, Simonetta, Fellin, Renato, Trabace, Luigia, Di Virgilio, Francesco. Activation of Microglia by Amyloid β Requires P2X7 Receptor Expression. The journal of immunology : official journal of the American Association of Immunologists, vol.182, no.7, 4378-4385.

  96. Sanz, Juana M., Falzoni, Simonetta, Rizzo, Roberta, Cipollone, Francesco, Zuliani, Giovanni, Di Virgilio, Francesco. Possible protective role of the 489C>T P2X7R polymorphism in Alzheimer's disease. Experimental gerontology, vol.60, 117-119.

  97. Facci, Laura, Barbierato, Massimo, Zusso, Morena, Skaper, Stephen D., Giusti, Pietro. Serum amyloid A primes microglia for ATP-dependent interleukin-1β release. Journal of neuroinflammation, vol.15, 164-.

  98. Qin, Juliang, Zhang, Xiaoyu, Wang, Ziqiang, Li, Jinju, Zhang, Zhen, Gao, Liangcai, Ren, Hua, Qian, Min, Du, Bing. Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. Science China. Life sciences, vol.60, no.2, 189-201.

  99. Lee, Hwan-Goo, Won, Sun-Mi, Gwag, Byoung-Joo, Lee, Yong-Beom. Microglial $P2X_7$ receptor expression is accompanied by neuronal damage in the cerebral cortex of the $APP_{swe}$/PS1dE9 mouse model of Alzheimer's disease. Experimental & molecular medicine : EMM, vol.43, no.1, 7-14.

  100. Leon-Otegui, M., Gomez-Villafuertes, R., Diaz-Hernandez, J.I., Diaz-Hernandez, M., Miras-Portugal, M.T., Gualix, J.. Opposite effects of P2X7 and P2Y2 nucleotide receptors on α-secretase-dependent APP processing in Neuro-2a cells. FEBS letters, vol.585, no.14, 2255-2262.

  101. Diaz-Hernandez, J.I., Gomez-Villafuertes, R., Leon-Otegui, M., Hontecillas-Prieto, L., del Puerto, A., Trejo, J.L., Lucas, J.J., Garrido, J.J., Gualix, J., Miras-Portugal, M.T., Diaz-Hernandez, M.. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3β and secretases. Neurobiology of aging, vol.33, no.8, 1816-1828.

  102. Miras-Portugal, M. Teresa, Diaz-Hernandez, Juan I., Gomez-Villafuertes, Rosa, Diaz-Hernandez, Miguel, Artalejo, Antonio R., Gualix, Javier. Role of P2X7 and P2Y 2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation “ in vivo ” by P2X7 receptor. Computational and structural biotechnology journal, vol.13, 176-181.

  103. Delarasse, Cécile, Gonnord, Pauline, Galante, Micaela, Auger, Rodolphe, Daniel, Hervé, Motta, Iris, Kanellopoulos, Jean M.. Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. Journal of neurochemistry, vol.109, no.3, 846-857.

  104. Mol Psychiatry Martin E 2018 

  105. Martin, Elodie, Delarasse, Cécile. Complex role of chemokine mediators in animal models of Alzheimer's Disease. Biomedical journal, vol.41, no.1, 34-40.

  106. Monif, Mastura, Reid, Christopher A., Powell, Kim L., Smart, Megan L., Williams, David A.. The P2X7Receptor Drives Microglial Activation and Proliferation: A Trophic Role for P2X7R Pore. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.29, no.12, 3781-3791.

  107. Monif, Mastura, Burnstock, Geoffrey, Williams, David A.. Microglia: Proliferation and activation driven by the P2X7 receptor. The international journal of biochemistry & cell biology, vol.42, no.11, 1753-1756.

  108. Shieh, Chu‐Hsin, Heinrich, Annette, Serchov, Tsvetan, van Calker, Dietrich, Biber, Knut. P2X7‐dependent, but differentially regulated release of IL‐6, CCL2, and TNF‐α in cultured mouse microglia. GLIA, vol.62, no.4, 592-607.

  109. Bhattacharya, Anindya, Biber, Knut. The microglial ATP‐gated ion channel P2X7 as a CNS drug target. GLIA, vol.64, no.10, 1772-1787.

  110. Raskin, Joel, Cummings, Jeffrey, Hardy, John, Schuh, Kory, Dean, Robert A.. Neurobiology of Alzheimer’s Disease: Integrated Molecular, Physiological, Anatomical, Biomarker, and Cognitive Dimensions. Current Alzheimer research, vol.12, no.8, 712-722.

  111. Zemla, Roland, Basu, Jayeeta. Hippocampal function in rodents. Current opinion in neurobiology, vol.43, 187-197.

  112. Voss, Joel L., Bridge, Donna J., Cohen, Neal J., Walker, John A.. A Closer Look at the Hippocampus and Memory. Trends in cognitive sciences, vol.21, no.8, 577-588.

  113. Hippocampus Ekstrom AD 2017 

  114. Rolls, Edmund T.. The storage and recall of memories in the hippocampo-cortical system. Cell and tissue research, vol.373, no.3, 577-604.

  115. 10.1002/1098-1063(2001)11:1<8::AID-HIPO1015>3.0.CO;2-7 

  116. Fiorenza, N.G., Rosa, J., Izquierdo, I., Myskiw, J.C.. Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behavioural brain research, vol.232, no.1, 210-216.

  117. Domingos, L.B., Hott, S.C., Terzian, A.L.B., Resstel, L.B.M.. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology, vol.128, 474-481.

  118. Campos, R.C., Parfitt, G.M., Polese, C.E., Coutinho-Silva, R., Morrone, F.B., Barros, D.M.. Pharmacological blockage and P2X7 deletion hinder aversive memories: Reversion in an enriched environment. Neuroscience, vol.280, 220-230.

  119. Labrousse, Virginie F., Costes, Laurence, Aubert, Agnès, Darnaudéry, Muriel, Ferreira, Guillaume, Amédée, Thierry, Layé, Sophie. Impaired Interleukin-1β and c-Fos Expression in the Hippocampus Is Associated with a Spatial Memory Deficit in P2X 7 Receptor-Deficient Mice. PloS one, vol.4, no.6, e6006-.

  120. Kitazawa, Masashi, Cheng, David, Tsukamoto, Michelle R., Koike, Maya A., Wes, Paul D., Vasilevko, Vitaly, Cribbs, David H., LaFerla, Frank M.. Blocking IL-1 Signaling Rescues Cognition, Attenuates Tau Pathology, and Restores Neuronal β-Catenin Pathway Function in an Alzheimer’s Disease Model. The journal of immunology : official journal of the American Association of Immunologists, vol.187, no.12, 6539-6549.

  121. Vezzani, A., Viviani, B.. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, vol.96, no.1, 70-82.

  122. Donzis, E.J., Tronson, N.C.. Modulation of learning and memory by cytokines: Signaling mechanisms and long term consequences. Neurobiology of learning and memory, vol.115, 68-77.

  123. Rizzo, Francesca Romana, Musella, Alessandra, De Vito, Francesca, Fresegna, Diego, Bullitta, Silvia, Vanni, Valentina, Guadalupi, Livia, Stampanoni Bassi, Mario, Buttari, Fabio, Mandolesi, Georgia, Centonze, Diego, Gentile, Antonietta. Tumor Necrosis Factor and Interleukin-1 β Modulate Synaptic Plasticity during Neuroinflammation. Neural plasticity, vol.2018, 8430123-.

  124. Avital, Avi, Goshen, Inbal, Kamsler, Ariel, Segal, Menahem, Iverfeldt, Kerstin, Richter-Levin, Gal, Yirmiya, Raz. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus, vol.13, no.7, 826-834.

  125. Tarr, A.J., McLinden, K.A., Kranjac, D., Kohman, R.A., Amaral, W., Boehm, G.W.. The effects of age on lipopolysaccharide-induced cognitive deficits and interleukin-1β expression. Behavioural brain research, vol.217, no.2, 481-485.

  126. Moore, A.H., Wu, M., Shaftel, S.S., Graham, K.A., O'Banion, M.K.. Sustained expression of interleukin-1β in mouse hippocampus impairs spatial memory. Neuroscience, vol.164, no.4, 1484-1495.

  127. Goshen, I., Kreisel, T., Ounallah-Saad, H., Renbaum, P., Zalzstein, Y., Ben-Hur, T., Levy-Lahad, E., Yirmiya, R.. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology, vol.32, no.8, 1106-1115.

  128. Tang, Yong, Illes, Peter. Regulation of adult neural progenitor cell functions by purinergic signaling. GLIA, vol.65, no.2, 213-230.

  129. Oliveira, A., Illes, P., Ulrich, H.. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology, vol.104, 272-281.

  130. Illes, Peter, Rubini, Patrizia. Regulation of neural stem/progenitor cell functions by P2X and P2Y receptors. Neural regeneration research : NRR, vol.12, no.3, 395-396.

  131. Deng, Wei, Aimone, James B., Gage, Fred H.. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?. Nature reviews. Neuroscience, vol.11, no.5, 339-350.

  132. Sahay, Amar, Scobie, Kimberly N., Hill, Alexis S., O'Carroll, Colin M., Kheirbek, Mazen A., Burghardt, Nesha S., Fenton, André A., Dranovsky, Alex, Hen, René. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, vol.472, no.7344, 466-470.

  133. Snyder, Jason S.. Questioning human neurogenesis. Nature, vol.555, no.7696, 315-316.

  134. Sorrells, Shawn F., Paredes, Mercedes F., Cebrian-Silla, Arantxa, Sandoval, Kadellyn, Qi, Dashi, Kelley, Kevin W., James, David, Mayer, Simone, Chang, Julia, Auguste, Kurtis I., Chang, Edward, Gutierrez Martin, Antonio J., Kriegstein, Arnold R., Mathern, Gary W., Oldham, Michael C., Huang, Eric J., Garcia-Verdugo, Jose Manuel, Yang, Zhengang, Alvarez-Buylla, Arturo. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, vol.555, no.7696, 377-381.

  135. Burnstock, Geoffrey. Purinergic Signalling: Therapeutic Developments. Frontiers in pharmacology, vol.8, 661-.

  136. Sperlágh, Beáta, Vizi, E. Sylvester, Wirkner, Kerstin, Illes, Peter. P2X7 receptors in the nervous system. Progress in neurobiology, vol.78, no.6, 327-346.

  137. Purinergic Signal Cieslak M 2018 

  138. Keystone, Edward C, Wang, Millie M, Layton, Mark, Hollis, Sally, McInnes, Iain B. Clinical evaluation of the efficacy of the P2X7purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Annals of the rheumatic diseases : the official journal, vol.71, no.10, 1630-1635.

  139. STOCK, THOMAS C., BLOOM, BRADLEY J., WEI, NATHAN, ISHAQ, SALIHA, PARK, WON, WANG, XIN, GUPTA, PANKAJ, MEBUS, CHARLES A.. Efficacy and Safety of CE-224,535, an Antagonist of P2X7Receptor, in Treatment of Patients with Rheumatoid Arthritis Inadequately Controlled by Methotrexate. The Journal of rheumatology, vol.39, no.4, 720-727.

  140. Inflamm Bowel Dis Eser A 2247 21 10 2015 

  141. Rech, J.C., Bhattacharya, A., Letavic, M.A., Savall, B.M.. The evolution of P2X7 antagonists with a focus on CNS indications. Bioorganic & medicinal chemistry letters, vol.26, no.16, 3838-3845.

  142. Basso, A.M., Bratcher, N.A., Harris, R.R., Jarvis, M.F., Decker, M.W., Rueter, L.E.. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: Relevance for neuropsychiatric disorders. Behavioural brain research, vol.198, no.1, 83-90.

  143. Csölle, Cecilia, Andó, Rómeó D., Kittel, Ágnes, Gölöncsér, Flóra, Baranyi, Mária, Soproni, Krisztina, Zelena, Dóra, Haller, József, Németh, Tamás, Mócsai, Attila, Sperlágh, Beáta. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. The international journal of neuropsychopharmacology, vol.16, no.1, 213-233.

  144. Otrokocsi, Lilla, Kittel, Ágnes, Sperlágh, Beáta. P2X7 Receptors Drive Spine Synapse Plasticity in the Learned Helplessness Model of Depression. The international journal of neuropsychopharmacology, vol.20, no.10, 813-822.

  145. Alcocer-Gomez, E., de Miguel, M., Casas-Barquero, N., Nunez-Vasco, J., Sanchez-Alcazar, J.A., Fernandez-Rodriguez, A., Cordero, M.D.. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain, behavior, and immunity, vol.36, 111-117.

  146. Söderlund, Johan, Olsson, Sara, Samuelsson, Martin, Walther-Jallow, Lilian, Johansson, Christian, Erhardt, Sophie, Landén, Mikael, Engberg, Göran. Elevation of cerebrospinal fluid interleukin-1β in bipolar disorder. Journal of psychiatry & neuroscience : JPN, vol.35, no.6, 114-118.

  147. Bhattacharya, Anindya, Wang, Qi, Ao, Hong, Shoblock, James R, Lord, Brian, Aluisio, Leah, Fraser, Ian, Nepomuceno, Diane, Neff, Robert A, Welty, Natalie, Lovenberg, Timothy W, Bonaventure, Pascal, Wickenden, Alan D, Letavic, Michael A. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ‐47965567. British journal of pharmacology : BJP, vol.170, no.3, 624-640.

  148. Lord, Brian, Aluisio, Leah, Shoblock, James R., Neff, Robert A., Varlinskaya, Elena I., Ceusters, Marc, Lovenberg, Timothy W., Carruthers, Nicholas, Bonaventure, Pascal, Letavic, Michael A., Deak, Terrence, Drinkenburg, Wilhelmus, Bhattacharya, Anindya. Pharmacology of a Novel Central Nervous System-Penetrant P2X7 Antagonist JNJ-42253432. The Journal of pharmacology and experimental therapeutics, vol.351, no.3, 628-641.

  149. Bhattacharya, Anindya. Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Frontiers in pharmacology, vol.9, 30-.

  150. Cosenza-Nashat, M., Zhao, M.-L., Suh, H.-S., Morgan, J., Natividad, R., Morgello, S., Lee, S. C.. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathology and applied neurobiology, vol.35, no.3, 306-328.

  151. Shen, Zhiwei, Bao, Xinjie, Wang, Renzhi. Clinical PET Imaging of Microglial Activation: Implications for Microglial Therapeutics in Alzheimer’s Disease. Frontiers in aging neuroscience, vol.10, 314-.

  152. Gaikwad, Sadanand M, Heneka, Michael T. Studying M1 and M2 states in adult microglia.. Methods in molecular biology, vol.1041, 185-197.

  153. 10.1136/bmj.i6362 

  154. Vandenberghe, Rik, Rinne, Juha O., Boada, Mercè, Katayama, Sadao, Scheltens, Philip, Vellas, Bruno, Tuchman, Michael, Gass, Achim, Fiebach, Jochen B., Hill, Derek, Lobello, Kasia, Li, David, McRae, Tom, Lucas, Prisca, Evans, Iona, Booth, Kevin, Luscan, Gerald, Wyman, Bradley T., Hua, Lisa, Yang, Lingfeng, Brashear, H. Robert, Black, Ronald S.. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimer's research & therapy, vol.8, 18-.

  155. Boimel, M., Grigoriadis, N., Lourbopoulos, A., Haber, E., Abramsky, O., Rosenmann, H.. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Experimental neurology, vol.224, no.2, 472-485.

  156. Selenica, Maj-Linda B, Davtyan, Hayk, Housley, Steven B, Blair, Laura J, Gillies, Anne, Nordhues, Bryce A, Zhang, Bo, Liu, Joseph, Gestwicki, Jason E, Lee, Daniel C, Gordon, Marcia N, Morgan, Dave, Dickey, Chad A. Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. Journal of neuroinflammation, vol.11, 152-.

  157. Villemagne, Victor L., Doré, Vincent, Burnham, Samantha C., Masters, Colin L., Rowe, Christopher C.. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nature reviews. Neurology, vol.14, no.4, 225-236.

  158. Szekely, C. A., Breitner, J.C.S., Fitzpatrick, A. L., Rea, T. D., Psaty, B. M., Kuller, L. H., Zandi, P. P.. NSAID use and dementia risk in the Cardiovascular Health Study* : Role of APOE and NSAID type. Neurology, vol.70, no.1, 17-24.

  159. Vlad, Steven C., Miller, Donald R., Kowall, Neil W., Felson, David T.. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, vol.70, no.19, 1672-1677.

  160. Reines, S. A., Block, G. A., Morris, J. C., Liu, G., Nessly, M. L., Lines, C. R., Norman, B. A., Baranak, C. C.. Rofecoxib : No effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology, vol.62, no.1, 66-71.

  161. Aisen, Paul S., Schafer, Kimberly A., Grundman, Michael, Pfeiffer, Eric, Sano, Mary, Davis, Kenneth L., Farlow, Martin R., Jin, Shelia, Thomas, Ronald G., Thal, Leon J.. Effects of Rofecoxib or Naproxen vs Placebo on Alzheimer Disease Progression : A Randomized Controlled Trial. JAMA : the journal of the American Medical Association, vol.289, no.21, 2819-.

  162. Jonsson, Thorlakur, Stefansson, Hreinn, Steinberg, Stacy, Jonsdottir, Ingileif, Jonsson, Palmi V., Snaedal, Jon, Bjornsson, Sigurbjorn, Huttenlocher, Johanna, Levey, Allan I., Lah, James J., Rujescu, Dan, Hampel, Harald, Giegling, Ina, Andreassen, Ole A., Engedal, Knut, Ulstein, Ingun, Djurovic, Srdjan, Ibrahim-Verbaas, Carla, Hofman, Albert, Ikram, M. Arfan, van Duijn, Cornelia M, Thorsteinsdottir, Unnur, Kong, Augustine, Stefansson, Kari. Variant ofTREM2Associated with the Risk of Alzheimer's Disease. The New England journal of medicine, vol.368, no.2, 107-116.

  163. Ulland, Tyler K., Colonna, Marco. TREM2 - a key player in microglial biology and Alzheimer disease. Nature reviews. Neurology, vol.14, no.11, 667-675.

  164. Jay, Taylor R., von Saucken, Victoria E., Landreth, Gary E.. TREM2 in Neurodegenerative Diseases. Molecular neurodegeneration, vol.12, 56-.

  165. Ory, Dieter, Celen, Sofie, Gijsbers, Rik, Van Den Haute, Chris, Postnov, Andrey, Koole, Michel, Vandeputte, Caroline, Andrés, José-Ignacio, Alcazar, Jesus, De Angelis, Meri, Langlois, Xavier, Bhattacharya, Anindya, Schmidt, Mark, Letavic, Michael A., Vanduffel, Wim, Van Laere, Koen, Verbruggen, Alfons, Debyser, Zeger, Bormans, Guy. Preclinical Evaluation of a P2X7 Receptor–Selective Radiotracer: PET Studies in a Rat Model with Local Overexpression of the Human P2X7 Receptor and in Nonhuman Primates. The Journal of nuclear medicine : JNM, vol.57, no.9, 1436-1441.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로