$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus : Current Status of Research and Challenges Ahead 원문보기

Microorganisms, v.7 no.3, 2019년, pp.84 -   

Matamp, Nandita ,  Bhat, Sarita G.

Abstract AI-Helper 아이콘AI-Helper

Vibrio alginolyticus and V. parahaemolyticus, the causative agents of Vibriosis in marine vertebrates and invertebrates, are also responsible for fatal illnesses such as gastroenteritis, septicemia, and necrotizing fasciitis in humans via the ingestion of contaminated seafood. Aquaculture farmers of...

주제어

참고문헌 (71)

  1. 1. Barbarossa V. Kucisec-Tepes N. Aldova E. Matek D. Stipoljev F. Ilizarov technique in the treatment of chronic osteomyelitis caused by Vibrio alginolyticus Croat. Med. J. 2002 43 346 349 12035144 

  2. 2. Feingold M.H. Kumar M.L. Otitis media associated with Vibrio alginolyticus in a child with pressure equalizing tubes Pediatr. Infect. Dis. J. 2004 23 475 476 10.1097/01.inf.0000126592.19378.30 15131479 

  3. 3. Li X.C. Xiang Z.Y. Xu X.M. Yan W.H. Ma J.M. Endophthalmitis caused by Vibrio alginolyticus J. Clin. Microbiol. 2009 47 3379 3381 10.1128/JCM.00722-09 19710275 

  4. 4. Xu X. Cheng J. Wu Q. Zhang J. Xie T. Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China BMC Microbiol. 2016 16 32 10.1186/s12866-016-0650-6 26955871 

  5. 5. Elmahdi S. DaSilva L.V. Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review Food Microbiol. 2016 57 128 134 10.1016/j.fm.2016.02.008 27052711 

  6. 6. Romero J. Feijoó C.G. Navarrete P. Antibiotics in aquaculture–use, abuse and alternatives Health and Environment in Aquaculture InTechOpen London, UK 2012 

  7. 7. Daniels N.A. Shafaie A. A Review of Pathogenic Vibrio Infections for Clinicians Infect. Med. 2000 17 665 685 

  8. 8. CDC Cholera and Other Vibrio Illness Surveillance (COVIS) 2016 Available online: https://www.cdc.gov/vibrio/surveillance.html (accessed on 28 January 2019) 

  9. 9. Kumar S. Singh B. Ran Overview of Mechanisms and Emergence of Antimicrobials Drug Resistance 2013 Available online: http://krishi.icar.gov.in/jspui/handle/123456789/11178 (accessed on 5 February 2019) 

  10. 10. Munita J.M. Arias C.A. Mechanisms of antibiotic resistance Microbiol. Spectr. 2016 4 10.1128/microbiolspec.VMBF-0016-2015 

  11. 11. Miller S.I. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules mBio 2016 7 e01541-16 10.1128/mBio.01541-16 27677793 

  12. 12. Partridge S.R. Analysis of antibiotic resistance regions in Gram-negative bacteria FEMS Microbiol. Rev. 2011 35 820 855 10.1111/j.1574-6976.2011.00277.x 21564142 

  13. 13. Chen Y. Chen X. Yu F. Wu M. Wang R. Zheng S. Zhu J. Serology, virulence, antimicrobial susceptibility and molecular characteristics of clinical Vibrio parahaemolyticus strains circulating in southeastern China from 2009 to 2013 Clin. Microbiol. Infect. 2016 22 258.e9 258.e16 10.1016/j.cmi.2015.11.003 

  14. 14. Hooper D.C. Mechanisms of action of antimicrobials: Focus on fluoroquinolones Clin. Infect. Dis. 2001 32 Suppl. 1 S9 S15 10.1086/319370 11249823 

  15. 15. Kitaoka M. Miyata S.T. Unterweger D. Pukatzki S. Antibiotic resistance mechanisms of Vibrio cholerae J. Med. Microbiol. 2011 60 397 407 10.1099/jmm.0.023051-0 21252269 

  16. 16. Wong H.C. Wang T.Y. Yang C.W. Tang C.T. Ying C. Wang C.H. Chang W.H. Characterization of a lytic vibriophage VP06 of Vibrio parahaemolyticus Res. Microbiol. 2018 10.1016/j.resmic.2018.07.003 30077624 

  17. 17. Morris J.G. Jr. Tenney J. Antibiotic therapy for Vibrio vulnificus infection JAMA 1985 253 1121 1122 10.1001/jama.1985.03350320041011 3968842 

  18. 18. Kitiyodom S. Khemtong S. Wongtavatchai J. Chuanchuen R. Characterization of antibiotic resistance in Vibrio spp. isolated from farmed marine shrimps ( Penaeus monodon ) FEMS Microbiol. Ecol. 2010 72 219 227 10.1111/j.1574-6941.2010.00846.x 20236324 

  19. 19. Ye L. Li R. Lin D. Zhou Y. Fu A. Ding Q. Chen S. Characterization of an IncA/C multidrug resistance plasmid in Vibrio alginolyticus Antimicrob. Agents Chemother. 2016 60 3232 3235 10.1128/AAC.00300-16 26976864 

  20. 20. Ralston E.P. Kite-Powell H. Beet A. An estimate of the cost of acute health effects from food-and water-borne marine pathogens and toxins in the USA J. Water Health 2009 9 680 694 10.2166/wh.2011.157 

  21. 21. O’Flaherty S. Ross R.P. Coffey A. Bacteriophage and their lysins for elimination of infectious bacteria FEMS Microbiol. Rev. 2009 33 801 819 10.1111/j.1574-6976.2009.00176.x 19416364 

  22. 22. Young R. Phage lysis: Do we have the whole story yet? Curr. Opin. Microbiol. 2013 16 790 797 10.1016/j.mib.2013.08.008 24113139 

  23. 23. Berry J.D. Rajaure M. Pang T. Young R. The spanin complex is essential for lambda lysis J. Bacteriol. 2012 194 5667 5674 10.1128/JB.01245-12 22904283 

  24. 24. Young R. Way S. Yin J. Syvanen M. Transposition mutagenesis of bacteriophage lambda: A new gene affecting cell lysis J. Mol. Biol. 1979 132 307 322 10.1016/0022-2836(79)90262-6 160463 

  25. 25. Krupovič M. Cvirkaitė-Krupovič V. Bamford D.H. Identification and functional analysis of the Rz/Rz1-like accessory lysis genes in the membrane-containing bacteriophage PRD1 Mol. Microbiol. 2008 68 492 503 10.1111/j.1365-2958.2008.06165.x 18366440 

  26. 26. Berry J. Savva C. Holzenburg A. Young R. The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation Protein Sci. 2010 19 1967 1977 10.1002/pro.485 20734329 

  27. 27. Nelson D. Loomis L. Fischetti V.A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme Proc. Natl. Acad. Sci. USA 2001 98 4107 4112 10.1073/pnas.061038398 11259652 

  28. 28. Donovan D.M. Dong S. Garrett W. Rousseau G.M. Moineau S. Pritchard D.G. Peptidoglycan hydrolase fusions maintain their parental specificities Appl. Environ. Microbol. 2006 72 2988 2996 10.1128/AEM.72.4.2988-2996.2006 16598006 

  29. 29. Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles J. Bacteriol. 1999 181 4725 4733 10438737 

  30. 30. Larpin Y. Oechslin F. Moreillon P. Resch G. Entenza J.M. Mancini S. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria PLoS ONE 2018 13 e0192507 10.1371/journal.pone.0192507 29408864 

  31. 31. Low L.Y. Yang C. Perego M. Osterman A. Liddington R. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins J. Biol. Chem. 2011 286 34391 34403 10.1074/jbc.M111.244160 21816821 

  32. 32. Chen H.-M. Li Y. Panda T. Buehler F.U. Ford C. Reilly P.J. Effect of replacing helical glycine residues with alanines on reversible and irreversible stability and production of Aspergillus awamori glucoamylase Protein Eng. 1996 9 499 505 10.1093/protein/9.6.499 8862550 

  33. 33. Briers Y. Lavigne R. Volckaert G. Hertveldt K. A standardized approach for accurate quantification of murein hydrolase activity in high-throughput assays J. Biochem. Biophys. Methods 2007 70 531 533 10.1016/j.jbbm.2006.10.009 17169435 

  34. 34. Sanz-Gaitero M. Keary R. Garcia-Doval C. Coffey A. van Raaij M.J. Crystallization of the CHAP domain of the endolysin from Staphylococcus aureus bacteriophage K Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013 69 1393 1396 10.1107/S1744309113030133 24316838 

  35. 35. Becker S.C. Swift S. Korobova O. Schischkova N. Kopylov P. Donovan D.M. Abaev I. Lytic activity of the staphylolytic Twort phage endolysin CHAP domain is enhanced by the SH3b cell wall binding domain FEMS Microbiol. Lett. 2015 362 1 10.1093/femsle/fnu019 25790497 

  36. 36. Walmagh M. Boczkowska B. Grymonprez B. Briers Y. Drulis-Kawa Z. Lavigne R. Characterization of five novel endolysins from Gram-negative infecting bacteriophages Appl. Microbiol. Biotechnol. 2013 97 4369 4375 10.1007/s00253-012-4294-7 22832988 

  37. 37. Oliveira H. Melo L.D. Santos S.B. Nóbrega F.L. Ferreira E.C. Cerca N. Azeredo J. Kluskens L.D. Molecular aspects and comparative genomics of bacteriophage endolysins J. Virol. 2013 87 4558 4570 10.1128/JVI.03277-12 23408602 

  38. 38. Yang H. Yu J. Wei H. Engineered bacteriophage lysins as novel anti-infectives Front. Microbiol. 2014 5 542 10.3389/fmicb.2014.00542 25360133 

  39. 39. Idelevich E.A. von Eiff C. Friedrich A.W. Iannelli D. Xia G. Peters G. Peschel A. Wanninger I. Becker K. In vitro activity against Staphylococcus aureus of a novel antimicrobial agent, PRF-119, a recombinant chimeric bacteriophage endolysin Antimicrob. Agents Chemother. 2011 55 4416 4419 10.1128/AAC.00217-11 21746950 

  40. 40. Fernandes S. Proença D. Cantante C. Silva F.A. Leandro C. Lourenço S. Milheiriço C. de Lencastre H. Cavaco-Silva P. Pimentel M. Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus Microb. Drug Resist. 2012 18 333 343 10.1089/mdr.2012.0025 22432707 

  41. 41. Mao J. Schmelcher M. Harty W.J. Foster-Frey J. Donovan D.M. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme FEMS Microbiol. Lett. 2013 1 30 36 10.1111/1574-6968.12104 

  42. 42. Dong Q. Wang J. Yang H. Wei C. Yu J. Zhang Y. Huang Y. Zhang X.E. Wei H. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci Microb. Biotechnol. 2014 10.1111/1751-7915.12166 

  43. 43. Yang H. Zhang Y. Yu J. Huang Y. Zhang X.E. Wei H. Novel chimeric lysin with high-level antimicrobial activity against methicillin-resistant Staphylococcus aureus in vitro and in vivo Antimicrob. Agents Chemother. 2014 58 536 542 10.1128/AAC.01793-13 24189265 

  44. 44. Yang H. Zhang H. Wang J. Yu J. Wei H. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus Sci. Rep. 2017 7 40182 10.1038/srep40182 28067286 

  45. 45. Briers Y. Walmagh M. Grymonprez B. Biebl M. Pirnay J.P. Defraine V. Michiels J. Cenens W. Aertsen A. Miller S. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa Antimicrob. Agents Chemother. 2014 58 3774 3784 10.1128/AAC.02668-14 24752267 

  46. 46. Lukacik P. Barnard T.J. Keller P.W. Chaturvedi K.S. Seddiki N. Fairman J.W. Noinaj N. Kirby T.L. Henderson J.P. Steven A.C. Structural engineering of a phage lysin that targets gram-negative pathogens Proc. Natl. Acad. Sci. USA 2012 109 9857 9862 10.1073/pnas.1203472109 22679291 

  47. 47. Zampara A. Sørensen M.C. Grimon D. Antenucci F. Briers Y. Brøndsted L. Innolysins: A novel approach to engineer endolysins to kill Gram-negative bacteria BioRxiv 2018 408948 10.1101/408948 

  48. 48. Crothers-Stomps C. Høj L. Bourne D.G. Hall M.R. Owens L. Isolation of lytic bacteriophage againstVibrio harveyi J. Appl. Microbiol. 2010 108 1744 1750 10.1111/j.1365-2672.2009.04578.x 19886890 

  49. 49. Rong R. Lin H. Wang J. Khan M.N. Li M. Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration Aquaculture 2014 418 171 176 10.1016/j.aquaculture.2013.09.028 

  50. 50. Zhang J. Cao Z. Xu Y. Li X. Li H. Wu F. Jin L. Complete genomic sequence of the Vibrio alginolyticus lytic bacteriophage PVA1 Arch. Virol. 2014 159 3447 3451 10.1007/s00705-014-2207-z 25161033 

  51. 51. Li Z. Li X. Zhang J. Wang X. Wang L. Cao Z. Xu Y. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus Fish Shellfish Immunol. 2016 54 302 311 10.1016/j.fsi.2016.04.026 27108378 

  52. 52. Kim S.G. Giri S.S. Jun J.W. Yun S. Kim H.J. Kim S.W. Kang J.W. Han S.J. Jeong D. Park S.C. Concentration-dependent reduction of planktonic-and biofilm-state Vibrio alginolyticus by the bacteriophage pVa-21 BioRxiv 2018 322933 10.1101/322933 

  53. 53. Skliros D. Kalatzis P.G. Katharios P. Flemetakis E. Comparative functional genomic analysis of two vibrio phages reveals complex metabolic interactions with the host cell Front. Microbiol. 2016 7 1807 10.3389/fmicb.2016.01807 27895630 

  54. 54. Lal T.M. Sano M. Hatai K. Ransangan J. Complete genome sequence of a giant Vibrio phage ValKK3infectingVibrioalginolyticus Genomicsdata 2016 8 37 10.1016/j.gdata.2016.03.002 

  55. 55. Skliros D. Kalatzis P.G. Flemetakis E. Biotechnology, Agricultural University of Athens, Iera Odos, Athens, Attika 11855, Greece Comparative genomics of small Myoviridae Vibriophages (GenBank accession number: MG640035.1) 2017 

  56. 56. Kokkari C. Sarropoulou E. Bastias R. Mandalakis M. Katharios P. Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus Arch. Microbiol. 2018 200 707 718 10.1007/s00203-018-1480-8 29372278 

  57. 57. Luo P. Yun L. Li Y. Tian Y. Liu Q. Huang W. Hu C. Complete genomic sequence of the Vibrio alginolyticus bacteriophage Vp670 and characterization of the lysis-related genes, cwlQ and holA BMC Genom. 2018 19 741 10.1186/s12864-018-5131-x 30305030 

  58. 58. Li F. Xing S. Fu K. Zhao S. Liu J. Tong Y. Zhou L. Genomic and biological characterization of the Vibrio alginolyticus -infecting “Podoviridae” bacteriophage, vB_ValP_IME271 Virus Genes 2019 1 9 10.1007/s11262-018-1622-8 30426314 

  59. 59. Wang W. Li M. Lin H. Wang J. Mao X. The Vibrio parahaemolyticus -infecting bacteriophage qdvp001: Genome sequence and endolysin with a modular structure Arch. Virol. 2016 161 2645 2652 10.1007/s00705-016-2957-x 27376376 

  60. 60. Wong M.H.Y. Liu M. Wan H.Y. Chen S. Characterization of Extended Spectrum β-lactamase Producing Vibrio parahaemolyticus Antimicrob. Agents Chemother. 2012 56 4026 4028 10.1128/AAC.00385-12 22508301 

  61. 61. Li M. Jin Y. Lin H. Wang J. Jiang X. Complete Genome of a Novel Lytic Vibrio parahaemolyticus Phage VPp1 and Characterization of Its Endolysin for Antibacterial Activities J. Food Prot. 2018 81 1117 1125 10.4315/0362-028X.JFP-17-278 29927621 

  62. 62. Zermeño-Cervantes L.A. Makarov R. Lomelí-Ortega C.O. Martínez-Díaz S.F. Cardona-Félix C.S. Recombinant Lys VPMS 1 as an endolysin with broad lytic activity against Vibrio parahaemolyticus strains associated to acute hepatopancreatic necrosis disease Aquac. Res. 2018 49 1723 1726 10.1111/are.13577 

  63. 63. Lal T.M. Ransangan J. Complete genome sequence of VpKK5, a novel Vibrio parahaemolyticus lytic siphophage Genome Announc. 2015 3 10.1128/genomeA.01381-14 

  64. 64. Midorikawa Y. Sano M. okyo University of Marine Science and Technology; Konan 4-5-7, Minato-ku, Tokyo, Japan. Complete Genome Sequence of Vibrio parahaemolyticus Bacteriophage pTD1 (GenBank accession number: AP017972.1) 2017 

  65. 65. Fischetti V.A. Bacteriophage lysins as effective antibacterials Curr. Opin. Microbiol. 2008 11 393 400 10.1016/j.mib.2008.09.012 18824123 

  66. 66. Jun S.Y. Jung G.M. Son J.S. Yoon S.J. Choi Y.J. Kang S.H. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK Antimicrob. Agents Chemother. 2011 55 1764 1767 10.1128/AAC.01097-10 21263051 

  67. 67. Jun S.Y. Jung G.M. Yoon S.J. Oh M.D. Choi Y.J. Lee W.J. Kong J.C. Seol J.G. Kang S.H. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1 Int. J. Antimicrob. Agents 2013 41 156 161 10.1016/j.ijantimicag.2012.10.011 23276502 

  68. 68. Jun S.Y. Jang I.J. Yoon S. Jang K. Yu K.S. Cho J.Y. Kang S.H. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers Antimicrob. Agents Chemother. 2017 61 e02629-16 10.1128/AAC.02629-16 28348152 

  69. 69. Totté J.E. van Doorn M.B. Pasmans S.G. Successful treatment of chronic Staphylococcus aureus -related dermatoses with the topical endolysin Staphefekt SA. 100: A report of 3 cases Case Rep. Dermatol. 2017 9 19 25 10.1159/000473872. 28611631 

  70. 70. Loeffler J.M. Djurkovic S. Fischetti V.A. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia Infect. Immun. 2003 71 6199 6204 10.1128/IAI.71.11.6199-6204.2003 14573637 

  71. 71. Barrera-Rivas C.I. Valle-Hurtado N.A. González-Lugo G.M. Baizabal-Aguirre V.M. Bravo-Patiño A. Cajero-Juárez M. Valdez-Alarcón J.J. Bacteriophage Therapy: An Alternative for the Treatment of Staphylococcus aureus Infections in Animals and Animal Models Frontiers in Staphylococcus aureus InTechOpen London, UK 2017 10.5772/65761 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로