$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Hydrated Intercalation for High‐Performance Aqueous Zinc Ion Batteries

Advanced energy materials, v.9 no.14, 2019년, pp.1900083 -   

Shin, Jaeho (School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak‐) ,  Choi, Dong Shin (ro Gwanak‐) ,  Lee, Hyeon Jeong (gu Seoul 08826 Republic of Korea) ,  Jung, Yousung (Graduate School of Energy Environment Water and Sustainability (EEWS) Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐) ,  Choi, Jang Wook (ro Yuseong‐)

Abstract AI-Helper 아이콘AI-Helper

AbstractAqueous zinc ion batteries (AZIBs) are steadily gaining attention based on their attractive merits regarding cost and safety. However, there are many obstacles to overcome, especially in terms of finding suitable cathode materials and elucidating their reaction mechanisms. Here, a mixed ...

참고문헌 (67)

  1. Wang, Fei, Borodin, Oleg, Gao, Tao, Fan, Xiulin, Sun, Wei, Han, Fudong, Faraone, Antonio, Dura, Joseph A, Xu, Kang, Wang, Chunsheng. Highly reversible zinc metal anode for aqueous batteries. Nature materials, vol.17, no.6, 543-549.

  2. Kundu, Dipan, Adams, Brian D., Duffort, Victor, Vajargah, Shahrzad Hosseini, Nazar, Linda F.. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature energy, vol.1, 16119-.

  3. Parker, Joseph F., Chervin, Christopher N., Pala, Irina R., Machler, Meinrad, Burz, Michael F., Long, Jeffrey W., Rolison, Debra R.. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science, vol.356, no.6336, 415-418.

  4. Zhang, Ning, Cheng, Fangyi, Liu, Junxiang, Wang, Liubin, Long, Xinghui, Liu, Xiaosong, Li, Fujun, Chen, Jun. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature communications, vol.8, no.1, 405-.

  5. Yang, Yongqiang, Tang, Yan, Fang, Guozhao, Shan, Lutong, Guo, Jiasheng, Zhang, Wenyu, Wang, Chao, Wang, Liangbing, Zhou, Jiang, Liang, Shuquan. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy & environmental science, vol.11, no.11, 3157-3162.

  6. Pan, Huilin, Shao, Yuyan, Yan, Pengfei, Cheng, Yingwen, Han, Kee Sung, Nie, Zimin, Wang, Chongmin, Yang, Jihui, Li, Xiaolin, Bhattacharya, Priyanka, Mueller, Karl T., Liu, Jun. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature energy, vol.1, 16039-.

  7. Hu, Ping, Zhu, Ting, Wang, Xuanpeng, Wei, Xiujuan, Yan, Mengyu, Li, Jiantao, Luo, Wen, Yang, Wei, Zhang, Wencui, Zhou, Liang, Zhou, Zhiqiang, Mai, Liqiang. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.3, 1758-1763.

  8. Sambandam, Balaji, Soundharrajan, Vaiyapuri, Kim, Sungjin, Alfaruqi, Muhammad H., Jo, Jeonggeun, Kim, Seokhun, Mathew, Vinod, Sun, Yang-kook, Kim, Jaekook. Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. Journal of materials chemistry. A, Materials for energy and sustainability, vol.6, no.9, 3850-3856.

  9. Park, Jae-Sang, Jo, Jae Hyeon, Aniskevich, Yauhen, Bakavets, Aliaksei, Ragoisha, Genady, Streltsov, Eugene, Kim, Jongsoon, Myung, Seung-Taek. Open-Structured Vanadium Dioxide as an Intercalation Host for Zn Ions: Investigation by First-Principles Calculation and Experiments. Chemistry of materials : a publication of the American Chemical Society, vol.30, no.19, 6777-6787.

  10. Xia, Chuan, Guo, Jing, Lei, Yongjiu, Liang, Hanfeng, Zhao, Chao, Alshareef, Husam N.. Rechargeable Aqueous Zinc‐Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced materials, vol.30, no.5, 1705580-.

  11. Xia, Chuan, Guo, Jing, Li, Peng, Zhang, Xixiang, Alshareef, Husam N.. Highly Stable Aqueous Zinc‐Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angewandte Chemie. international edition, vol.57, no.15, 3943-3948.

  12. Rong, Ziqin, Malik, Rahul, Canepa, Pieremanuele, Sai Gautam, Gopalakrishnan, Liu, Miao, Jain, Anubhav, Persson, Kristin, Ceder, Gerbrand. Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.17, 6016-6021.

  13. Levi, E., Gofer, Y, Aurbach, D.. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 860-868.

  14. Xu, Chengjun, Li, Baohua, Du, Hongda, Kang, Feiyu. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angewandte Chemie. international edition, vol.51, no.4, 933-935.

  15. Lee, Boeun, Lee, Hae Ri, Kim, Haesik, Chung, Kyung Yoon, Cho, Byung Won, Oh, Si Hyoung. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chemical communications : Chem comm, vol.51, no.45, 9265-9268.

  16. Sun, Wei, Wang, Fei, Hou, Singyuk, Yang, Chongyin, Fan, Xiulin, Ma, Zhaohui, Gao, Tao, Han, Fudong, Hu, Renzong, Zhu, Min, Wang, Chunsheng. Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. Journal of the American Chemical Society, vol.139, no.29, 9775-9778.

  17. Lee, Boeun, Seo, Hyo Ree, Lee, Hae Ri, Yoon, Chong Seung, Kim, Jong Hak, Chung, Kyung Yoon, Cho, Byung Won, Oh, Si Hyoung. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. ChemSusChem, vol.9, no.20, 2948-2956.

  18. Zhang, Ning, Cheng, Fangyi, Liu, Yongchang, Zhao, Qing, Lei, Kaixiang, Chen, Chengcheng, Liu, Xiaosong, Chen, Jun. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, vol.138, no.39, 12894-12901.

  19. Alfaruqi, Muhammad H., Mathew, Vinod, Song, Jinju, Kim, Sungjin, Islam, Saiful, Pham, Duong Tung, Jo, Jeonggeun, Kim, Seokhun, Baboo, Joseph Paul, Xiu, Zhiliang, Lee, Kug-Seung, Sun, Yang-Kook, Kim, Jaekook. Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chemistry of materials : a publication of the American Chemical Society, vol.29, no.4, 1684-1694.

  20. Pan, Qiwei, Barbash, Dmitri, Smith, Derrick M., Qi, Hao, Gleeson, Sarah E., Li, Christopher Y.. Correlating Electrode-Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyte‐Based Lithium Metal Batteries. Advanced energy materials, vol.7, no.22, 1701231-.

  21. Yan, Mengyu, He, Pan, Chen, Ying, Wang, Shanyu, Wei, Qiulong, Zhao, Kangning, Xu, Xu, An, Qinyou, Shuang, Yi, Shao, Yuyan, Mueller, Karl T., Mai, Liqiang, Liu, Jun, Yang, Jihui. Water‐Lubricated Intercalation in V2O5·nH2O for High‐Capacity and High‐Rate Aqueous Rechargeable Zinc Batteries. Advanced materials, vol.30, no.1, 1703725-.

  22. Pang, Qiang, Sun, Congli, Yu, Yanhao, Zhao, Kangning, Zhang, Ziyi, Voyles, Paul M., Chen, Gang, Wei, Yingjin, Wang, Xudong. H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Advanced energy materials, vol.8, no.19, 1800144-.

  23. He, Pan, Zhang, Guobin, Liao, Xiaobin, Yan, Mengyu, Xu, An, Qinyou, Liu, Jun, Mai, Liqiang. Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High‐Performance Zinc‐Ion Batteries. Advanced energy materials, vol.8, no.10, 1702463-.

  24. Zhang, Ning, Jia, Ming, Dong, Yang, Wang, Yuanyuan, Xu, Jianzhong, Liu, Yongchang, Jiao, Lifang, Cheng, Fangyi. Hydrated Layered Vanadium Oxide as a Highly Reversible Cathode for Rechargeable Aqueous Zinc Batteries. Advanced functional materials, vol.29, no.10, 1807331-.

  25. Kundu, Dipan, Oberholzer, Pascal, Glaros, Christos, Bouzid, Assil, Tervoort, Elena, Pasquarello, Alfredo, Niederberger, Markus. Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable Electrochemical Cycling. Chemistry of materials : a publication of the American Chemical Society, vol.30, no.11, 3874-3881.

  26. Guo, Zhaowei, Ma, Yuanyuan, Dong, Xiaoli, Huang, Jianhang, Wang, Yonggang, Xia, Yongyao. An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie. international edition, vol.57, no.36, 11737-11741.

  27. Meng, Wei, Pigliapochi, Roberta, Bayley, Paul M., Pecher, Oliver, Gaultois, Michael W., Seymour, Ieuan D., Liang, Han-Pu, Xu, Wenqian, Wiaderek, Kamila M., Chapman, Karena W., Grey, Clare P.. Unraveling the Complex Delithiation and Lithiation Mechanisms of the High Capacity Cathode Material V6O13. Chemistry of materials : a publication of the American Chemical Society, vol.29, no.13, 5513-5524.

  28. Ding, Yuan-Li, Wen, Yuren, Wu, Chao, van Aken, Peter A., Maier, Joachim, Yu, Yan. 3D V6O13 Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.15, no.2, 1388-1394.

  29. West, K., Zachau-Christiansen, B., Jacobsen, T., Atlung, S.. V6O13 As cathode material for lithium cells. Journal of power sources, vol.14, no.1, 235-245.

  30. Xu, N., Ma, X., Wang, M., Qian, T., Liang, J., Yang, W., Wang, Y., Hu, J., Yan, C.. Stationary Full Li-Ion Batteries with Interlayer-Expanded V6O13 Cathodes and Lithiated Graphite Anodes. Electrochimica acta, vol.203, 171-177.

  31. Gustafsson, T., Thomas, J.O., Koksbang, R., Farrington, G.C.. The polymer battery as an environment for in situ X-ray diffraction studies of solid-state electrochemical processes. Electrochimica acta, vol.37, no.9, 1639-1643.

  32. Soundharrajan, Vaiyapuri, Sambandam, Balaji, Kim, Sungjin, Alfaruqi, Muhammad H., Putro, Dimas Yunianto, Jo, Jeonggeun, Kim, Seokhun, Mathew, Vinod, Sun, Yang-Kook, Kim, Jaekook. Na2V6O16·3H2O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.4, 2402-2410.

  33. Ding, Junwei, Du, Zhiguo, Gu, Linqing, Li, Bin, Wang, Lizhen, Wang, Shiwen, Gong, Yongji, Yang, Shubin. Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide. Advanced materials, vol.30, no.26, 1800762-.

  34. Giorgetti, Marco, Passerini, Stefano, Smyrl, William H., Mukerjee, Sanjeev, Yang, X. Q., McBreen, James. In Situ X‐Ray Absorption Spectroscopy Characterization of V 2 O 5 Xerogel Cathodes upon Lithium Intercalation. Journal of the Electrochemical Society : JES, vol.146, no.7, 2387-2392.

  35. Stallworth, P. E., Kostov, S., denBoer, M. L., Greenbaum, S. G., Lampe-Onnerud, C.. X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. Journal of applied physics, vol.83, no.3, 1247-1255.

  36. Lim, Jongwoo, Li, Yiyang, Alsem, Daan Hein, So, Hongyun, Lee, Sang Chul, Bai, Peng, Cogswell, Daniel A., Liu, Xuzhao, Jin, Norman, Yu, Young-sang, Salmon, Norman J., Shapiro, David A., Bazant, Martin Z., Tyliszczak, Tolek, Chueh, William C.. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science, vol.353, no.6299, 566-571.

  37. Liu, Hao, Strobridge, Fiona C., Borkiewicz, Olaf J., Wiaderek, Kamila M., Chapman, Karena W., Chupas, Peter J., Grey, Clare P.. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science, vol.344, no.6191, 1252817-1252817.

  38. Xue, K. H., Yang, H., Zhou, Y. M., Li, G., Skotheim, T. A., Lee, H. S., Yang, X. Q., McBreen, J.. A Study of the Zn / V 6 O 13 Secondary Battery. Journal of the Electrochemical Society : JES, vol.140, no.12, 3413-3417.

  39. Lee, Hyeon Jeong, Shin, Jaeho, Choi, Jang Wook. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries. Advanced materials, vol.30, no.42, 1705851-.

  40. Nam, Kwan Woo, Kim, Sangryun, Lee, Soyeon, Salama, Michael, Shterenberg, Ivgeni, Gofer, Yossi, Kim, Joo-Seong, Yang, Eunjeong, Park, Chan Sun, Kim, Ju-Sik, Lee, Seok-Soo, Chang, Won-Seok, Doo, Seok-Gwang, Jo, Yong Nam, Jung, Yousung, Aurbach, Doron, Choi, Jang Wook. The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.15, no.6, 4071-4079.

  41. Mizuno, Yoshifumi, Okubo, Masashi, Hosono, Eiji, Kudo, Tetsuichi, Zhou, Haoshen, Oh-ishi, Katsuyoshi. Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+). The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.21, 10877-10882.

  42. Mizuno, Yoshifumi, Okubo, Masashi, Hosono, Eiji, Kudo, Tetsuichi, Oh-ishi, Katsuyoshi, Okazawa, Atsushi, Kojima, Norimichi, Kurono, Ryosuke, Nishimura, Shin-ichi, Yamada, Atsuo. Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. Journal of materials chemistry. A, Materials for energy and sustainability, vol.1, no.42, 13055-.

  43. KunduCurrent address: ETH Zürich, Laboratory for Multifunctional Materials, HCI F 503, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich Switzerland., Dipan, Hosseini Vajargah, Shahrzad, Wan, Liwen, Adams, Brian, Prendergast, David, Nazar, Linda F.. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy & environmental science, vol.11, no.4, 881-892.

  44. Nam, Kwan Woo, Kim, Sangryun, Yang, Eunjeong, Jung, Yousung, Levi, Elena, Aurbach, Doron, Choi, Jang Wook. Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.10, 3721-3725.

  45. Kim, Sangryun, Nam, Kwan Woo, Lee, Soyeon, Cho, Woosuk, Kim, Joo‐Seong, Kim, Byung Gon, Oshima, Yoshifumi, Kim, Ju‐Sik, Doo, Seok‐Gwang, Chang, Hyuk, Aurbach, Doron, Choi, Jang Wook. Direct Observation of an Anomalous Spinel‐to‐Layered Phase Transition Mediated by Crystal Water Intercalation. Angewandte Chemie. international edition, vol.54, no.50, 15094-15099.

  46. Kim, Sangryun, Lee, Soyeon, Nam, Kwan Woo, Shin, Jaeho, Lim, Soo Yeon, Cho, Woosuk, Suzuki, Kota, Oshima, Yoshifumi, Hirayama, Masaaki, Kanno, Ryoji, Choi, Jang Wook. On the Mechanism of Crystal Water Insertion during Anomalous Spinel-to-Birnessite Phase Transition. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.15, 5488-5494.

  47. Lim, Soo Yeon, Lee, Ji Hoon, Kim, Sangryun, Shin, Jaeho, Choi, Wonchang, Chung, Kyung Yoon, Jung, Dae Soo, Choi, Jang Wook. Lattice Water for the Enhanced Performance of Amorphous Iron Phosphate in Sodium-Ion Batteries. ACS energy letters, vol.2, no.5, 998-1004.

  48. Rastgoo-Deylami, Mohadese, Chae, Munseok S., Hong, Seung-Tae. H2V3O8 as a High Energy Cathode Material for Nonaqueous Magnesium-Ion Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.30, no.21, 7464-7472.

  49. Lee, Ji Hoon, Lee, Hyeon Jeong, Choi, Sun Hee, Shin, Jaeho, Chung, Sung‐Yoon, Choi, Jang Wook. Superlattice Formation of Crystal Water in Layered Double Hydroxides for Long‐Term and Fast Operation of Aqueous Rechargeable Batteries. Advanced energy materials, vol.8, no.18, 1703572-.

  50. Spencer Braithwaite, J., Catlow, C. Richard A., Harding, John H., Gale, Julian D.. A theoretical study of lithium intercalation into V6O13—a combined classical, quantum mechanical approach. Physical chemistry chemical physics : PCCP, vol.3, no.18, 4052-4059.

  51. Wang, Ruocun, Chung, Ching-Chang, Liu, Yang, Jones, Jacob L., Augustyn, Veronica. Electrochemical Intercalation of Mg2+ into Anhydrous and Hydrated Crystalline Tungsten Oxides. Langmuir : the ACS journal of surfaces and colloids, vol.33, no.37, 9314-9323.

  52. Augustyn, Veronica, Gogotsi, Yury. 2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage. Joule, vol.1, no.3, 443-452.

  53. Wang, Ruocun, Mitchell, James B., Gao, Qiang, Tsai, Wan-Yu, Boyd, Shelby, Pharr, Matt, Balke, Nina, Augustyn, Veronica. Operando Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition. ACS nano, vol.12, no.6, 6032-6039.

  54. Ravel, B., Newville, M.. ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of synchrotron radiation, vol.12, no.4, 537-541.

  55. Filik, J., Ashton, A. W., Chang, P. C. Y., Chater, P. A., Day, S. J., Drakopoulos, M., Gerring, M. W., Hart, M. L., Magdysyuk, O. V., Michalik, S., Smith, A., Tang, C. C., Terrill, N. J., Wharmby, M. T., Wilhelm, H.. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2. Journal of applied crystallography, vol.50, no.3, 959-966.

  56. Kresse, G., Furthmüller, J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, vol.6, no.1, 15-50.

  57. Grimme, Stefan, Antony, Jens, Ehrlich, Stephan, Krieg, Helge. A consistent and accurateab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, vol.132, no.15, 154104-.

  58. Perdew, John P., Burke, Kieron, Ernzerhof, Matthias. Generalized Gradient Approximation Made Simple. Physical review letters, vol.77, no.18, 3865-3868.

  59. Blöchl, P. E.. Projector augmented-wave method. Physical review. B, Condensed matter, vol.50, no.24, 17953-17979.

  60. Wang, Lei, Maxisch, Thomas, Ceder, Gerbrand. Oxidation energies of transition metal oxides within theGGA+Uframework. Physical review. B, Condensed matter and materials physics, vol.73, no.19, 195107-.

  61. Monkhorst, Hendrik J., Pack, James D.. Special points for Brillouin-zone integrations. Physical review B, Solid state, vol.13, no.12, 5188-5192.

  62. Sheppard, Daniel, Xiao, Penghao, Chemelewski, William, Johnson, Duane D., Henkelman, Graeme. A generalized solid-state nudged elastic band method. The Journal of chemical physics, vol.136, no.7, 074103-.

  63. Sheppard, Daniel, Henkelman, Graeme. Paths to which the nudged elastic band converges. Journal of computational chemistry, vol.32, no.8, 1769-1771.

  64. Urban, Alexander, Seo, Dong-Hwa, Ceder, Gerbrand. Computational understanding of Li-ion batteries. Npj Computational materials, vol.2, no.1, 16002-.

  65. Prendergast, David, Grossman, Jeffrey C., Galli, Giulia. The electronic structure of liquid water within density-functional theory. The Journal of chemical physics, vol.123, no.1, 014501-.

  66. Mahoney, Michael W., Jorgensen, William L.. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of chemical physics, vol.112, no.20, 8910-8922.

  67. Toukmaji, Abdulnour Y., Board Jr., John A.. Ewald summation techniques in perspective: a survey. Computer physics communications, vol.95, no.2, 73-92.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로