$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements

Wiley interdisciplinary reviews. Computational statistics, v.11 no.3, 2019년, pp.e1460 -   

Cavanaugh, Joseph E. (Department of Biostatistics University of Iowa, Iowa City Iowa) ,  Neath, Andrew A. (Department of Mathematics and Statistics Southern Illinois University Edwardsville Illinois)

Abstract AI-Helper 아이콘AI-Helper

The Akaike information criterion (AIC) is one of the most ubiquitous tools in statistical modeling. The first model selection criterion to gain widespread acceptance, AIC was introduced in 1973 by Hirotugu Akaike as an extension to the maximum likelihood principle. Maximum likelihood is conventional...

참고문헌 (35)

  1. 10.1017/CBO9780511790485 

  2. 10.1007/978-0-387-71887-3 

  3. Model selection. Institute of mathematical statistics lecture notes-Monograph series Lahiri P. 2001 

  4. 2nd international symposium on information theory Akaike H. 267 1973 

  5. Akaike, H.. A new look at the statistical model identification. IEEE transactions on automatic control, vol.19, no.6, 716-723.

  6. Allen, David M.. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics, vol.16, no.1, 125-127.

  7. Azari, Rahman, Li, Lexin, Tsai, Chih-Ling. Longitudinal data model selection. Computational statistics & data analysis, vol.50, no.11, 3053-3066.

  8. Bedrick, Edward J., Tsai, Chih-Ling. Model Selection for Multivariate Regression in Small Samples. Biometrics, vol.50, no.1, 226-.

  9. Bengtsson, Thomas, Cavanaugh, Joseph E.. An improved Akaike information criterion for state-space model selection. Computational statistics & data analysis, vol.50, no.10, 2635-2654.

  10. Bozdogan, Hamparsum. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, vol.52, no.3, 345-370.

  11. Model selection and multi‐model inference: A practical information‐theoretic approach Burnham K. P. 2002 

  12. Cavanaugh, Joseph E.. Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics & probability letters, vol.33, no.2, 201-208.

  13. 10.1007/978-0-8176-4619-6_33 

  14. Statistica Sinica Cavanaugh J. E. 473 7 1997 A bootstrap variant of AIC for state‐space model selection 

  15. Davies, Simon L., Neath, Andrew A., Cavanaugh, Joseph E.. Cross validation model selection criteria for linear regression based on the Kullback–Leibler discrepancy. Statistical methodology, vol.2, no.4, 249-266.

  16. Biometrika Hurvich C. M. 709 77 1990 Improved estimators of Kullback‐Leibler information for autoregressive model selection in small samples 

  17. Hurvich, Clifford M., Tsai, Chih-Ling. Regression and Time Series Model Selection in Small Samples. Biometrika, vol.76, no.2, 297-307.

  18. Hurvich, Clifford M., Tsai, Chih‐Ling. A CORRECTED AKAIKE INFORMATION CRITERION FOR VECTOR AUTOREGRESSIVE MODEL SELECTION. Journal of time series analysis, vol.14, no.3, 271-279.

  19. Hurvich, Clifford M., Tsai, Chih-Ling. Model Selection for Extended Quasi-Likelihood Models in Small Samples. Biometrics, vol.51, no.3, 1077-.

  20. Ishiguro, Makio, Sakamoto, Yosiyuki, Kitagawa, Genshiro. Bootstrapping Log Likelihood and EIC, an Extension of AIC. Annals of the Institute of Statistical Mathematics, vol.49, no.3, 411-434.

  21. Kitagawa, Genshiro. Non-Gaussian State-Space Modeling of Nonstationary Time Series: Rejoinder. Journal of the American Statistical Association, vol.82, no.400, 1060-.

  22. Konishi, Sadanori, Kitagawa, Genshiro. Generalised Information Criteria in Model Selection. Biometrika, vol.83, no.4, 875-890.

  23. Information theory and statistics Kullback S. 1968 

  24. 10.1214/aoms/1177729694 

  25. Model selection Linhart H. 1986 

  26. 10.2307/1267380 

  27. Mathematics in engineering, science and aerospace; special issue on “Theory and applications of divergence and information measures” Neath A. A. 381 2012 

  28. Pan, Wei. Akaike's Information Criterion in Generalized Estimating Equations. Biometrics, vol.57, no.1, 120-125.

  29. Schwarz, Gideon. Estimating the Dimension of a Model. The Annals of statistics, vol.6, no.2,

  30. Shibata, Ritei. Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process. The Annals of statistics, vol.8, no.1,

  31. Shibata, Ritei. An Optimal Selection of Regression Variables. Biometrika, vol.68, no.1, 45-54.

  32. Statistica Sinica Shibata R. 375 7 1997 Bootstrap estimate of Kullback‐Leibler information for model selection 

  33. Journal of the Royal Statistical Society, Series B Stone M. 44 39 1977 10.1111/j.2517-6161.1977.tb01603.x An asymptotic equivalence of choice of model by cross‐validation and Akaike's criterion 

  34. Sugiura, Nariaki. Further analysts of the data by akaike' s information criterion and the finite corrections. Communications in statistics. theory and methods, vol.7, no.1, 13-26.

  35. Mathematical Sciences Takeuchi K. 12 153 1976 Distribution of information statistics and criteria for adequacy of models 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로