$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Improved catalytic activity under internal reforming solid oxide fuel cell over new rhodium-doped perovskite catalyst

Journal of power sources, v.423, 2019년, pp.305 - 315  

Kim, Ghun Sik (Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ,  Lee, Byung Yong (R&D Department, TSL Chem Co. Ltd., Kapeul Great Valley) ,  Accardo, Grazia (Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ,  Ham, Hyung Chul (Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST)) ,  Moon, Jooho (Department of Materials Science and Engineering, Yonsei University) ,  Yoon, Sung Pil (Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract The catalytic partial oxidation of methane is evaluated over a Rh (2–15 mol%)-doped Sr0.92Y0.08TiO3-δ (SYT) perovskite-based catalyst prepared by the Pechini method for fuel-cell applications. The Rh dopant replaces titanium in the SYT catalyst, resulting in a catalyst with exc...

주제어

참고문헌 (57)

  1. Renew. Sustain. Energy Rev. Kirubakaran 13 2430 2009 10.1016/j.rser.2009.04.004 A review on fuel cell technologies and power electronic interface 

  2. Appl. Energy Ding 233-234 37 2018 Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode 

  3. J. Power Sources Dillig 373 139 2018 10.1016/j.jpowsour.2017.11.007 Thermal effects of planar high temperature heat pipes in solid oxide cell stacks operated with internal methane reforming 

  4. Int. J. Hydrogen Energy Aarva 36 10337 2010 SOFC and MCFC: commonalities and opportunities for integrated research 

  5. J. Power Sources Accardo 338 74 2017 10.1016/j.jpowsour.2016.11.029 Influence of nano zirconia on NiAl anodes for molten carbonate fuel cell: characterization, cell tests and post-analysis 

  6. J. Power Sources Accardo 352 90 2017 10.1016/j.jpowsour.2017.03.112 A novel Nickel-Aluminum alloy with Titanium for improved anode performance and properties in Molten Carbonate Fuel Cells 

  7. J. Power Sources Peters 106 238 2002 10.1016/S0378-7753(01)01039-4 Internal reforming of methane in solid oxide fuel cell systems 

  8. Appl. Catal. Gen. Pena 144 7 1996 10.1016/0926-860X(96)00108-1 New catalytic routes for syngas and hydrogen production 

  9. Renew. Sustain. Energy Rev. Sengodan 82 761 2017 10.1016/j.rser.2017.09.071 Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications 

  10. Int. J. Hydrogen Energy Wilberforce 41 16509 2016 10.1016/j.ijhydene.2016.02.057 Advances in stationary and portable fuel cell applications 

  11. J. Power Sources Palo 108 28 2002 10.1016/S0378-7753(01)01010-2 Development of a soldier-portable fuel cell power system 

  12. Int. J. Hydrogen Energy Shaw 38 2810 2013 10.1016/j.ijhydene.2012.12.066 Analysis of H2 storage needs for early market “man-portable” fuel cell applications 

  13. J. Power Sources Raadschelders 96 160 2001 10.1016/S0378-7753(01)00494-3 Energy sources for the future dismounted soldier, the total integration of the energy consumption within the soldier system 

  14. J. Power Sources Bostic 137 76 2004 10.1016/j.jpowsour.2004.05.049 The US army foreign comparative test fuel cell program 

  15. Int. J. Hydrogen Energy Chen 43 14059 2018 10.1016/j.ijhydene.2018.05.125 Catalytic partial oxidation of methane for the production of syngas using microreaction technology: a computational fluid dynamics study 

  16. Fuel Velasco 153 192 2015 10.1016/j.fuel.2015.03.009 Catalytic partial oxidation of methane over nickel and ruthenium based catalysts under low O2/CH4 ratios and with addition of steam 

  17. Fuel Process. Technol. Caudal 134 231 2015 10.1016/j.fuproc.2015.01.040 Modeling interactions between chemistry and turbulence for simulations of partial oxidation processes 

  18. Int. J. Hydrogen Energy Zhang 40 16115 2015 10.1016/j.ijhydene.2015.09.150 Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane 

  19. Int. J. Hydrogen Energy Rahman 40 14833 2015 10.1016/j.ijhydene.2015.09.015 H2 production from aqueous-phase reforming of glycerol over Cu-Ni bimetallic catalysts supported on carbon nanotubes 

  20. Int. J. Hydrogen Energy Zhao 41 3349 2016 10.1016/j.ijhydene.2015.09.063 Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming 

  21. Renew. Sustain. Energy Rev. Yeo 100 52 2019 10.1016/j.rser.2018.10.016 Recent developments in sulphur-resilient catalytic systems for syngas production 

  22. React. Kinet. Mech. Catal. Gomez-Cuaspud 120 167 2017 10.1007/s11144-016-1092-8 One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming 

  23. ChemCatChem Thalinger 8 2057 2016 10.1002/cctc.201600262 Rhodium-Catalyzed methanation and methane steam reforming reactions on rhodium-perovskite systems: metal-support interaction 

  24. Appl. Nanosci. Hbaieb 6 847 2016 10.1007/s13204-015-0494-7 Exploring strontium titanate as a reforming catalyst for dodecane 

  25. Int. J. Hydrogen Energy Hbaieb 42 5114 2017 10.1016/j.ijhydene.2016.11.127 Hydrogen production by autothermal reforming of dodecane over strontium titanate based perovskite catalysts 

  26. Int. J. Appl. Ceram. Technol. Liu 2 301 2005 10.1111/j.1744-7402.2005.02032.x Activity and structure of perovskites as diesel-reforming catalysts for solid oxide fuel cell 

  27. React. Kinet. Mech. Catal. Hbaieb 122 943 2017 10.1007/s11144-017-1244-5 Activity and sulfur tolerance of lanthanum strontium titanate based perovskite catalysts for dodecane reforming 

  28. Appl. Catal. B Environ. Mota 113-114 271 2011 Insights on the role of Ru substitution in the properties of LaCoO3-based oxides as catalysts precursors for the oxidative reforming of diesel fuel 

  29. Appl. Energy Kwon 227 213 2017 10.1016/j.apenergy.2017.07.105 The novel perovskite-type Ni-doped Sr0.92Y0.08TiO3 catalyst as a reforming biogas (CH4+ CO2) for H2 production 

  30. Ceram. Int. Kim 40 8237 2014 10.1016/j.ceramint.2014.01.021 Pd catalyzed Sr0.92Y0.08TiO3?δ/Sm0.2Ce0.8O2-δ anodes in solid oxide fuel cells 

  31. ACS Sustain. Chem. Eng. Doh 5 9370 2017 10.1021/acssuschemeng.7b02402 Influence of cation substitutions based on ABO3 perovskite materials, Sr1-xYxTi1-yRuyO3-δ, on ammonia dehydrogenation 

  32. Int. J. Hydrogen Energy Kim 37 16130 2012 10.1016/j.ijhydene.2012.08.030 Sr0.92Y0.08TiO3?δ/Sm0.2Ce0.8O2?δ anode for solid oxide fuel cells running on methane 

  33. Ceram. Int. Accardo 44 3800 2018 10.1016/j.ceramint.2017.11.165 Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion 

  34. Hagen 2015 Industrial Catalysis:A Pratical Approach 

  35. Int. J. Hydrogen Energy Yun 37 4356 2012 10.1016/j.ijhydene.2011.11.148 Effect of Sm0.2Ce0.8O1.9 on the carbon coking in Ni-based anodes for solid oxide fuel cells running on methane fuel 

  36. J. Alloy. Comp. Singh 748 637 2018 10.1016/j.jallcom.2018.03.170 Structural and electrical conduction behaviour of yttrium doped strontium titanate: anode material for SOFC application 

  37. Int. J. Hydrogen Energy Li 42 22294 2017 10.1016/j.ijhydene.2017.03.189 Molybdenum substitution at the B-site of lanthanum strontium titanate anodes for solid oxide fuel cells 

  38. Shekhawat 2011 Fuel Cells: Technologies for Fuel Processing 

  39. Appl. Catal. Gen. Provendier 180 163 1999 10.1016/S0926-860X(98)00343-3 Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition 

  40. J. Environ. Sci. (China) Cao 52 197 2017 10.1016/j.jes.2016.04.017 Improved activity and durability of Rh-based three-way catalyst under diverse aging atmospheres by ZrO2 support 

  41. RSC Adv. Kuncewicz 6 77201 2016 10.1039/C6RA09364G Rhodium-doped titania photocatalysts with two-step bandgap excitation by visible light - influence of the dopant concentration on photosensitization efficiency 

  42. Proc. Combust. Inst. Sui 36 4313 2017 10.1016/j.proci.2016.06.001 A comparative experimental and numerical investigation of the heterogeneous and homogeneous combustion characteristics of fuel-rich methane mixtures over rhodium and platinum 

  43. Appl. Catal. Gen. El Hassan 520 114 2016 10.1016/j.apcata.2016.04.014 Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15 

  44. Nat. Commun. Neagu 6 8120 2015 10.1038/ncomms9120 Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution 

  45. Int. J. Hydrogen Energy Sutthiumporn 37 11195 2012 10.1016/j.ijhydene.2012.04.059 CO2 dry-reforming of methane over La0.8Sr 0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C-H activation and carbon suppression 

  46. Chem. Rev. Royer 114 10292 2014 10.1021/cr500032a Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality 

  47. Appl. Catal. Gen. Christian Enger 346 1 2008 10.1016/j.apcata.2008.05.018 A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts 

  48. Int. J. Hydrogen Energy Ding 40 6835 2015 10.1016/j.ijhydene.2015.03.094 Coking resistant Ni/ZrO2@SiO2 catalyst for the partial oxidation of methane to synthesis gas 

  49. ACS Catal. Kondratenko 4 3136 2014 10.1021/cs5002465 Partial oxidation of methane to syngas over γ-Al2O3-supported rh nanoparticles: kinetic and mechanistic origins of size effect on selectivity and activity 

  50. Acta Mater. Zurlo 112 77 2016 10.1016/j.actamat.2016.04.015 Copper-doped lanthanum ferrites for symmetric SOFCs 

  51. Int. J. Hydrogen Energy Sarno 43 14742 2018 10.1016/j.ijhydene.2018.06.021 Lanthanum chromite based composite anodes for dry reforming of methane 

  52. J. Power Sources Zurlo 271 187 2014 10.1016/j.jpowsour.2014.07.183 La0.8Sr0.2Fe0.8Cu0.2O 3-δ as “cobalt-free” cathode for La 0.8Sr0.2Ga0.8Mg0.2O 3-δ electrolyte 

  53. J. Power Sources Finnerty 86 390 2000 10.1016/S0378-7753(99)00498-X Internal reforming over nickel/zirconia anodes in SOFCs operating on methane: influence of anode formulation, pre-treatment and operating conditions 

  54. J. Catal. Sfeir 202 229 2002 10.1006/jcat.2001.3286 Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes 

  55. Mater. Lett. Lanzini 164 312 2015 10.1016/j.matlet.2015.10.171 Influence of the microstructure on the catalytic properties of SOFC anodes under dry reforming of methane 

  56. J. Power Sources Guerra 245 154 2014 10.1016/j.jpowsour.2013.06.088 Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells 

  57. Energy Jiao 113 432 2016 10.1016/j.energy.2016.07.063 Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로