최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nano research, v.12 no.4, 2019년, pp.911 - 917
Park, Sohyun , Song, Jinju , Kim, Seyeon , Sambandam, Balaji , Mathew, Vinod , Kim, Sungjin , Jo, Jeonggeun , Kim, Seokhun , Kim, Jaekook
초록이 없습니다.
Nature M. Armand 451 652 2008 10.1038/451652a Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Chem. Mater. J. B. Goodenough 22 587 2010 10.1021/cm901452z Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.
Energy Environ. Sci. C. X. Zu 4 2614 2011 10.1039/c0ee00777c Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.
Chem. Commun. H. Q. Li 48 1201 2012 10.1039/C1CC14764A Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201-1217.
Adv. Funct. Mater. M. D. Slater 23 947 2013 10.1002/adfm.201200691 Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
Nat. Mater. N. Yabuuchi 11 512 2012 10.1038/nmat3309 Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512-517.
Adv. Energy Mater. S. W. Kim 2 710 2012 10.1002/aenm.201200026 Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.
Electrochem. Commun. J. J. Ding 22 85 2012 10.1016/j.elecom.2012.06.001 Ding, J. J.; Zhou, Y. N.; Sun, Q.; Fu, Z. W. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem. Commun. 2012, 22, 85-88.
Nat. Mater. R. Berthelot 10 74 2011 10.1038/nmat2920 Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74-80.
Electrochem. Commun. S. M. Oh 22 149 2012 10.1016/j.elecom.2012.06.014 Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 2012, 22, 149-152.
J. Power Sources H. T. Zhuo 160 698 2006 10.1016/j.jpowsour.2005.12.079 Zhuo, H. T.; Wang, X. Y.; Tang, A. P.; Liu, Z. M.; Gamboa, S.; Sebastian, P. J. The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 2006, 160, 698-703.
J. Am. Chem. Soc. H. Kabbour 133 11900 2011 10.1021/ja204321y Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentré, O. α-Na3M2(PO4)3 (M = Ti, Fe): Absolute cationic ordering in NASICON-type phases. J. Am. Chem. Soc. 2011, 133, 11900-11903.
J. Mater. Chem. R. A. Shakoor 22 20535 2012 10.1039/c2jm33862a Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S. W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535-20541.
Phys. Chem. Chem. Phys. W. X. Song 15 14357 2013 10.1039/c3cp52308j Song, W. X.; Ji, X. B.; Pan, C. C.; Zhu, Y. R.; Chen, Q. Y.; Banks, C. E. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14357-14363.
J. Solid State Chem. J. M. Le Meins 148 260 1999 10.1006/jssc.1999.8447 Le Meins, J. M.; Crosnier-Lopez, M. P.; Hemon-Ribaud, A.; Courbion, G. Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 1999, 148, 260-277.
Nat. Commun. B. Zhang 7 10308 2016 10.1038/ncomms10308 Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308.
J. Alloys Compd. T. Jiang 478 604 2009 10.1016/j.jallcom.2008.11.147 Jiang, T.; Chen, G.; Li, A.; Wang, C. Z.; Wei, Y. J. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 478, 604-607.
J. Solid State Electrochem. P. R. Kumar 21 223 2017 10.1007/s10008-016-3365-6 Kumar, P. R.; Jung, Y. H.; Kim, D. K. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x(PO4)2F3-2x. J. Solid State Electrochem. 2017, 21, 223-232.
J. Mater. Chem. A Q. Liu 3 21478 2015 10.1039/C5TA05939A Liu, Q.; Wang, D. X.; Yang, X.; Chen, N.; Wang, C. Z.; Bie, X. F.; Wei, Y. J.; Chen, G.; Du, F. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 2015, 3, 21478-21485.
J. Electrochem. Soc. B. J. Paul 161 A1468 2014 10.1149/2.1191409jes Paul, B. J.; Kang, S. W.; Gim, J.; Song, J. J.; Kim, S.; Mathew, V.; Kim, J. Nucleation and growth controlled polyol synthesis of size-focused nanocrystalline LiFePO4 cathode for high performance li-ion batteries. J. Electrochem. Soc. 2014, 161, A1468-A1473.
Mater. Charact. V. Mathew 89 93 2014 10.1016/j.matchar.2014.01.004 Mathew, V.; Alfaruqi, M. H.; Gim, J.; Song, J. J.; Kim, S.; Ahn, D.; Kim, J. Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. Mater. Charact. 2014, 89, 93-101.
Particuology Y. F. Long 33 42 2017 10.1016/j.partic.2016.10.006 Long, Y. F.; Zhang, Z. H.; Wu, Z.; Su, J.; Lv, X. Y.; Wen, Y. X. Microwaveassisted polyol synthesis of LiMnPO4/C and its use as a cathode material in lithium-ion batteries. Particuology 2017, 33, 42-49.
J. Phys. Chem. C E. Uchaker 117 1621 2013 10.1021/jp310641k Uchaker, E.; Zhou, N.; Li, Y. W.; Cao, G. Z. Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 2013, 117, 1621-1626.
J. Power Sources Y. T. Cui 249 42 2014 10.1016/j.jpowsour.2013.10.036 Cui, Y. T.; Xu, N.; Kou, L. Q.; Wu, M. T.; Chen, L. Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method. J. Power Sources 2014, 249, 42-47.
Electrochem. Solid-State Lett. D. H. Kim 9 A439 2006 10.1149/1.2218308 Kim, D. H.; Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 2006, 9, A439-A442.
Chem. Mater. Z. G. Liu 26 2513 2014 10.1021/cm403728w Liu, Z. G.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X. G.; Zou, H.; Zhong, G. M.; Yang, Y.; Grey, C. P. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem. Mater. 2014, 26, 2513-2521.
Phys. Rev. B A. C. Ferrari 64 075414 2001 10.1103/PhysRevB.64.075414 Ferrari, A. C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414.
Electrochem. Solid-State Lett. M. M. Doeff 6 A207 2003 10.1149/1.1601372 Doeff, M. M.; Hu, Y. Q.; McLarnon, F.; Kostecki, R. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid-State Lett. 2003, 6, A207-A209.
J. Electrochem. Soc. J. D. Wilcox 154 A389 2007 10.1149/1.2667591 Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389-A395.
J. Power Sources W. X. Song 256 258 2014 10.1016/j.jpowsour.2014.01.025 Song, W. X.; Ji, X. B.; Wu, Z. P.; Yang, Y. C.; Zhou, Z.; Li, F. Q.; Chen, Q. Y.; Banks, C. E. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J. Power Sources 2014, 256, 258-263.
ACS Appl. Mater. Interfaces Q. Liu 8 31709 2016 10.1021/acsami.6b11372 Liu, Q.; Meng, X.; Wei, Z. X.; Wang, D. X.; Gao, Y.; Wei, Y. J.; Du, F.; Chen, G. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 31709-31715.
Langmuir W. X. Song 30 12438 2014 10.1021/la5025444 Song, W. X.; Cao, X. Y.; Wu, Z. P.; Chen, J.; Zhu, Y. R.; Hou, H. S.; Lan, Q.; Ji, X. B. Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 2014, 30, 12438-12446.
Adv. Funct. Mater. Y. U. Park 24 4603 2014 10.1002/adfm.201400561 Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1-xPO4)2 F1+2x (0 ≤ x ≤ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2014, 24, 4603-4614.
Adv. Energy Mater. M. Bianchini 7 1700514 2017 10.1002/aenm.201700514 Bianchini, M.; Xiao, P. H.; Wang, Y.; Ceder, G. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700514
Chem. Mater. C. B. Zhu 29 5207 2017 10.1021/acs.chemmater.7b00927 Zhu, C. B.; Wu, C.; Chen, C. C.; Kopold, P.; Van Aken, P. A.; Maier, J.; Yu, Y. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207-5215.
J. Am. Chem. Soc. S. C. Yin 125 10402 2003 10.1021/ja034565h Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. Electrochemical property: Structure relationships in monoclinic Li3-YV2(PO4)3. J. Am. Chem. Soc. 2003, 125, 10402-10411.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.