$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion

ACS catalysis, v.9 no.4, 2019년, pp.2880 - 2892  

Kim, Sungtak (Energy & Environmental Research Team , Institute for Advanced Engineering (IAE) , Yongin-Si , Gyeonggi-do 17180 , Republic of Korea) ,  Park, Gyungah (C1 Gas Separation & Conversion Research Center , Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114 , Republic of Korea) ,  Woo, Min Hee (C1 Gas Separation & Conversion Research Center , Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114 , Republic of Korea) ,  Kwak, Geunjae (C1 Gas Separation & Conversion Research Center , Korea Research Institute of Chemical Technology (KRICT) , Daejeon 34114 , Republic of Korea) ,  Kim, Seok Ki

Abstract AI-Helper 아이콘AI-Helper

Incorporating mesoporosity into zeolite catalysts has been regarded as an innovative technology that improves diffusivity and catalytic lifetime. Here, we propose a facile synthesis of the hierarchically structured ZSM-5 with accompanying intracrystalline mesopores, which was achieved by controlling...

Keyword

참고문헌 (82)

  1. 10.1002/9780470822371 Xu, R.; Pang, W.; Yu, J.; Huo, Q.; Chen, J. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure . John Wiley & Sons: Singapore, 2007; p 1. 

  2. 10.1002/9783527673957.ch15 Triantafyllidis, K. S.; Iliopoulou, E. F.; Karakoulia, S. A.; Nitsos, C. K.; Lappas, A. A., In Mesoporous Zeolites: Preparation, Characterization and Applications ; García-Martínez, J., Li, K., Eds. Wiley-VCH: Hoboken, NJ, 2015; p 497. 

  3. Ogunronbi, K.E., Al-Yassir, N., Al-Khattaf, S.. New insights into hierarchical metal-containing zeolites; synthesis and kinetic modelling of mesoporous gallium-containing ZSM-5 for propane aromatization. Journal of molecular catalysis. A, Chemical, vol.406, 1-18.

  4. Ishihara, A., Inui, K., Hashimoto, T., Nasu, H.. Preparation of hierarchical β and Y zeolite-containing mesoporous silica-aluminas and their properties for catalytic cracking of n-dodecane. Journal of catalysis, vol.295, 81-90.

  5. Pérez-Ramírez, Javier, Christensen, Claus H., Egeblad, Kresten, Christensen, Christina H., Groen, Johan C.. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society reviews, vol.37, no.11, 2530-2542.

  6. Schmidt, Joel E., Fu, Donglong, Deem, Michael W., Weckhuysen, Bert M.. Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie. international edition, vol.55, no.52, 16044-16048.

  7. Chen, Jialing, Liang, Tingyu, Li, Junfen, Wang, Sen, Qin, Zhangfeng, Wang, Pengfei, Huang, Lizhi, Fan, Weibin, Wang, Jianguo. Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS catalysis, vol.6, no.4, 2299-2313.

  8. Yokoi, Toshiyuki, Mochizuki, Hiroshi, Namba, Seitaro, Kondo, Junko N., Tatsumi, Takashi. Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.27, 15303-15315.

  9. Janda, Amber, Bell, Alexis T.. Effects of Si/Al Ratio on the Distribution of Framework Al and on the Rates of Alkane Monomolecular Cracking and Dehydrogenation in H-MFI. Journal of the American Chemical Society, vol.135, no.51, 19193-19207.

  10. Zhang, Gui Quan, Bai, Ting, Chen, Teng Fei, Fan, Wen Tao, Zhang, Xin. Conversion of Methanol to Light Aromatics on Zn-Modified Nano-HZSM-5 Zeolite Catalysts. Industrial & engineering chemistry research, vol.53, no.39, 14932-14940.

  11. Wei, Zhenhao, Xia, Tengfei, Liu, Minghui, Cao, Qingsheng, Xu, Yarong, Zhu, Kake, Zhu, Xuedong. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of chemical science and engineering, vol.9, no.4, 450-460.

  12. Wang, Xiaoxing, Zhang, Junfeng, Zhang, Tao, Xiao, He, Song, Faen, Han, Yizhuo, Tan, Yisheng. Mesoporous ZnZSM-5 zeolites synthesized by one-step desilication and reassembly: a durable catalyst for methanol aromatization. RSC advances, vol.6, no.28, 23428-23437.

  13. Huang, Jun, Jiang, Yijiao, Marthala, V.R. Reddy, Bressel, Arne, Frey, Joerg, Hunger, Michael. Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. Journal of catalysis, vol.263, no.2, 277-283.

  14. Wang, Weihai, Li, Gang, Li, Weigang, Liu, Liping. Synthesis of hierarchical TS-1 by caramel templating. Chemical communications : Chem comm, vol.47, no.12, 3529-3531.

  15. Wu, Leilei, Degirmenci, Volkan, Magusin, Pieter C. M. M., Szyja, Bartłomiej M., Hensen, Emiel J. M.. Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chemical communications : Chem comm, vol.48, no.76, 9492-9494.

  16. Kim, S.-S., Shah, J., Pinnavaia, T. J.. Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite. Chemistry of materials : a publication of the American Chemical Society, vol.15, no.8, 1664-1668.

  17. Yang, Z. X., Xia, Y. D., Mokaya, R.. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template. Advanced materials, vol.16, no.8, 727-732.

  18. Kim, Jeongnam, Choi, Minkee, Ryoo, Ryong. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of catalysis, vol.269, no.1, 219-228.

  19. Sartipi, Sina, Alberts, Margje, Santos, Vera P., Nasalevich, Maxim, Gascon, Jorge, Kapteijn, Freek. Insights into the Catalytic Performance of Mesoporous H‐ZSM‐5‐Supported Cobalt in Fischer-Tropsch Synthesis. ChemCatChem, vol.6, no.1, 142-151.

  20. Groen, Johan C., Moulijn, Jacob A., Pérez-Ramírez, Javier. Desilication: on the controlled generation of mesoporosity in MFI zeolites. Journal of materials chemistry, vol.16, no.22, 2121-2131.

  21. Fang, Yunming, Hu, Haoquan, Chen, Guohua. In Situ Assembly of Zeolite Nanocrystals into Mesoporous Aggregate with Single-Crystal-Like Morphology without Secondary Template. Chemistry of materials : a publication of the American Chemical Society, vol.20, no.5, 1670-1672.

  22. Petushkov, Anton, Yoon, Suhyoung, Larsen, Sarah C.. Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.137, no.1, 92-100.

  23. Yang, Jianhua, Yu, Suxia, Hu, Huiye, Zhang, Yan, Lu, Jinming, Wang, Jinqu, Yin, Dehong. Synthesis of ZSM-5 hierarchical microsphere-like particle by two stage varying temperature crystallization without secondary template. Chemical engineering journal, vol.166, no.3, 1083-1089.

  24. Zhou, Ming, Rownaghi, Ali A., Hedlund, Jonas. Synthesis of mesoporous ZSM-5 zeolite crystals by conventional hydrothermal treatment. RSC advances, vol.3, no.36, 15596-.

  25. Wang, Sen, Wang, Pengfei, Qin, Zhangfeng, Chen, Yanyan, Dong, Mei, Li, Junfen, Zhang, Kan, Liu, Ping, Wang, Jianguo, Fan, Weibin. Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS catalysis, vol.8, no.6, 5485-5505.

  26. Boronat, Mercedes, Martínez, Cristina, Corma, Avelino. Mechanistic differences between methanol and dimethyl ethercarbonylation in side pockets and large channels of mordenite. Physical chemistry chemical physics : PCCP, vol.13, no.7, 2603-2612.

  27. Román-Leshkov, Yuriy, Moliner, Manuel, Davis, Mark E.. Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.4, 1096-1102.

  28. Cui, Z.M., Liu, Q., Ma, Z., Bian, S.W., Song, W.G.. Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion. Journal of catalysis, vol.258, no.1, 83-86.

  29. Zhu, Qingjun, Kondo, Junko N., Yokoi, Toshiyuki, Setoyama, Tooru, Yamaguchi, Masashi, Takewaki, Takahiko, Domen, Kazunari, Tatsumi, Takashi. The influence of acidities of boron- and aluminium-containing MFI zeolites on co-reaction of methanol and ethene. Physical chemistry chemical physics : PCCP, vol.13, no.32, 14598-14605.

  30. Liu, Ming, Yokoi, Toshiyuki, Yoshioka, Masato, Imai, Hiroyuki, Kondo, Junko N., Tatsumi, Takashi. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Physical chemistry chemical physics : PCCP, vol.16, no.9, 4155-4164.

  31. Di Iorio, John R., Gounder, Rajamani. Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.7, 2236-2247.

  32. Wang, Yong, Yokoi, Toshiyuki, Namba, Seitaro, Kondo, Junko N., Tatsumi, Takashi. Improvement of catalytic performance of MCM-22 in the cracking of n-hexane by controlling the acidic property. Journal of catalysis, vol.333, 17-28.

  33. Maier, Sarah M., Jentys, Andreas, Lercher, Johannes A.. Steaming of Zeolite BEA and Its Effect on Acidity: A Comparative NMR and IR Spectroscopic Study. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.16, 8005-8013.

  34. Dědeček, Jiří, Kaucký, Dalibor, Wichterlová, Blanka, Gonsiorová, Olga. Co2+ ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Physical chemistry chemical physics : PCCP, vol.4, no.21, 5406-5413.

  35. Dedecek, Jiri, Balgová, Vendula, Pashkova, Veronika, Klein, Petr, Wichterlová, Blanka. Synthesis of ZSM-5 Zeolites with Defined Distribution of Al Atoms in the Framework and Multinuclear MAS NMR Analysis of the Control of Al Distribution. Chemistry of materials : a publication of the American Chemical Society, vol.24, no.16, 3231-3239.

  36. Dědeček, J., Kaucký, D., Wichterlová, B.. Co2+ ion siting in pentasil-containing zeolites, part 3. : Co2+ ion sites and their occupation in ZSM-5: a VIS diffuse reflectance spectroscopy study. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.35, 483-494.

  37. Pol. J. Chem. Guisnet M. 1455 71 1997 

  38. Kresse, G., Furthmüller, J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, vol.6, no.1, 15-50.

  39. Kresse, G., Furthmüller, J.. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical review. B, Condensed matter, vol.54, no.16, 11169-11186.

  40. Blöchl, P. E.. Projector augmented-wave method. Physical review. B, Condensed matter, vol.50, no.24, 17953-17979.

  41. Hammer, B., Hansen, L. B., Nørskov, J. K.. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical review. B, Condensed matter and materials physics, vol.59, no.11, 7413-7421.

  42. Klimeš, Jiří, Bowler, David R., Michaelides, Angelos. Van der Waals density functionals applied to solids. Physical review. B, Condensed matter and materials physics, vol.83, no.19, 195131-.

  43. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C., Lundqvist, B. I.. Van der Waals Density Functional for General Geometries. Physical review letters, vol.92, no.24, 246401-.

  44. van Koningsveld, H.. High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5. Acta crystallographica. Section B, Structural science, vol.46, no.6, 731-735.

  45. Wang, Chuan-Ming, Wang, Yang-Dong, Du, Yu-Jue, Yang, Guang, Xie, Zai-Ku. Computational insights into the reaction mechanism of methanol-to-olefins conversion in H-ZSM-5: nature of hydrocarbon pool. Catalysis science & technology, vol.6, no.9, 3279-3288.

  46. Wang, C.M., Wang, Y.D., Xie, Z.K.. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species?. Journal of catalysis, vol.301, 8-19.

  47. McCann, David M., Lesthaeghe, David, Kletnieks, Philip W., Guenther, Darryl R., Hayman, Miranda J., Van Speybroeck, Veronique, Waroquier, Michel, Haw, James F.. A Complete Catalytic Cycle for Supramolecular Methanol-to-Olefins Conversion by Linking Theory with Experiment. Angewandte Chemie. international edition, vol.47, no.28, 5179-5182.

  48. 2011 Annual Book of ASTM Standards 2011 

  49. Sing, K. S. W.. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry. : Chimie pure et appliqueé, vol.57, no.4, 603-619.

  50. Davis, Tracy M., Drews, Timothy O., Ramanan, Harikrishnan, He, Chuan, Dong, Jingshan, Schnablegger, Heimo, Katsoulakis, Markos A., Kokkoli, Efrosini, McCormick, Alon V., Penn, R. Lee, Tsapatsis, Michael. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature materials, vol.5, no.5, 400-408.

  51. Hould, Nathan D., Lobo, Raul F.. Nanoparticle Precursors and Phase Selectivity in Hydrothermal Synthesis of Zeolite β. Chemistry of materials : a publication of the American Chemical Society, vol.20, no.18, 5807-5815.

  52. Studies in Surface Science and Catalysis Petrik L. F. 517 94 1995 

  53. Studies in Surface Science and Catalysis Hou L. Y. 239 28 1986 

  54. Aiello, R., Crea, F., Nastro, A., Pellegrino, C.. Zeolite crystallization from high-silica mono- or bicationic alkali (Li, Na or K) gels in presence and in absence of TPA ions. Zeolites : the international journal of molecular sieves, vol.7, no.6, 549-553.

  55. Lowe, Barrie M., Nee, James R.D.. Crystallization of “inorganic” ZSM-5 in the system K2OAl2O3SiO2H2O. Zeolites : the international journal of molecular sieves, vol.14, no.8, 610-619.

  56. Padovan, Mario, Leofanti, Giuseppe, Solari, Marcello, Moretti, Enrico. Studies on the ZSM—5 zeolite formation. Zeolites : the international journal of molecular sieves, vol.4, no.3, 295-299.

  57. Derouane, Eric G., Gabelica, Zelimir. Role of selected synthesis variables in nucleation and growth of zeolite ZSM-5. Journal of solid state chemistry, vol.64, no.3, 296-304.

  58. Persson, A.E., Schoeman, B.J., Sterte, J., Otterstedt, J.-E.. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals. Zeolites : the international journal of molecular sieves, vol.15, no.7, 611-619.

  59. Li, Q., Creaser, D., Sterte, J.. The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.31, no.1, 141-150.

  60. Wang, Zhuopeng, Li, Chao, Cho, Hong Je, Kung, Shih-Chieh, Snyder, Mark A., Fan, Wei. Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.3, 1298-1305.

  61. Sazama, P., Dědeček, J., Gábová, V., Wichterlová, B., Spoto, G., Bordiga, S.. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. Journal of catalysis, vol.254, no.2, 180-189.

  62. Liang, Tingyu, Chen, Jialing, Qin, Zhangfeng, Li, Junfen, Wang, Pengfei, Wang, Sen, Wang, Guofu, Dong, Mei, Fan, Weibin, Wang, Jianguo. Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS catalysis, vol.6, no.11, 7311-7325.

  63. O'Dell, L.A., Savin, S.L.P., Chadwick, A.V., Smith, M.E.. A 27Al MAS NMR study of a sol-gel produced alumina: Identification of the NMR parameters of the θ-Al2O3 transition alumina phase. Solid state nuclear magnetic resonance, vol.31, no.4, 169-173.

  64. Müller, M, Harvey, G, Prins, R. Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.34, no.2, 135-147.

  65. Dědeček, Jiří, Sklenak, Stepan, Li, Chengbin, Wichterlová, Blanka, Gábová, Vendula, Brus, Jiří, Sierka, Marek, Sauer, Joachim. Effect of Al−Si−Al and Al−Si−Si−Al Pairs in the ZSM-5 Zeolite Framework on the27Al NMR Spectra. A Combined High-Resolution27Al NMR and DFT/MM Study. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.113, no.4, 1447-1458.

  66. Sklenak, Stepan, Dědeček, Jiří, Li, Chengbin, Wichterlová, Blanka, Gábová, Vendula, Sierka, Marek, Sauer, Joachim. Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution 27Al NMR Spectroscopy and Quantum Mechanics / Molecular Mechanics Study of ZSM-5. Angewandte Chemie. international edition, vol.46, no.38, 7286-7289.

  67. Dedecek, Jiri, Lucero, Melissa J., Li, Chengbin, Gao, Fei, Klein, Petr, Urbanova, Martina, Tvaruzkova, Zdenka, Sazama, Petr, Sklenak, Stepan. Complex Analysis of the Aluminum Siting in the Framework of Silicon-Rich Zeolites. A Case Study on Ferrierites. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.22, 11056-11064.

  68. Astala, R., Auerbach, S. M., Monson, P. A.. Density Functional Theory Study of Silica Zeolite Structures: Stabilities and Mechanical Properties of SOD, LTA, CHA, MOR, and MFI. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.108, no.26, 9208-9215.

  69. Studies in Surface Science and Catalysis Anderson M. W. 91 52 1989 

  70. Xu, T.; White, J. L. Catalyst Pretreatment in an Oxygenate to Olefins Reaction System . U.S. Patent No. US6734330, May 11, 2004. 

  71. Xu, T.; White, J. L. Catalyst Pretreatment in an Oxgenate to Olefins Reaction System . U.S. Patent No. US6743747, June 1, 2004. 

  72. Ilias, Samia, Bhan, Aditya. Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. ACS catalysis, vol.3, no.1, 18-31.

  73. Ilias, S., Bhan, A.. The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins?. Journal of catalysis, vol.311, 6-16.

  74. Lesthaeghe, David, Van Speybroeck, Veronique, Marin, Guy B., Waroquier, Michel. Understanding the Failure of Direct C&n.bond;C Coupling in the Zeolite-Catalyzed Methanol-to-Olefin Process. Angewandte Chemie. international edition, vol.45, no.11, 1714-1719.

  75. Mole, T., Bett, G.. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons using 13carbon- and deuterium-labeled feeds. Journal of catalysis, vol.84, no.2, 435-445.

  76. Song, W., Marcus, D. M., Fu, H., Ehresmann, J. O., Haw, J. F.. An Oft-Studied Reaction That May Never Have Been: Direct Catalytic Conversion of Methanol or Dimethyl Ether to Hydrocarbons on the Solid Acids HZSM-5 or HSAPO-34. Journal of the American Chemical Society, vol.124, no.15, 3844-3845.

  77. Wang, Sen, Chen, Yanyan, Wei, Zhihong, Qin, Zhangfeng, Chen, Jialing, Ma, Hong, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Theoretical Insights into the Mechanism of Olefin Elimination in the Methanol-to-Olefin Process over HZSM-5, HMOR, HBEA, and HMCM-22 Zeolites. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory, vol.118, no.39, 8901-8910.

  78. Wang, Sen, Chen, Yanyan, Wei, Zhihong, Qin, Zhangfeng, Ma, Hong, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.119, no.51, 28482-28498.

  79. Schulz, Hans, Wei, Ming. Pools and Constraints in Methanol Conversion to Olefins and Fuels on Zeolite HZSM5. Topics in catalysis, vol.57, no.6, 683-692.

  80. Kim, Sungtak, Sasmaz, Erdem, Lauterbach, Jochen. Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts. Applied catalysis. B, Environmental, vol.168, 212-219.

  81. Tian, Peng, Wei, Yingxu, Ye, Mao, Liu, Zhongmin. Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS catalysis, vol.5, no.3, 1922-1938.

  82. Kim, Sungtak, Park, Gyungah, Kim, Seok Ki, Kim, Yong Tae, Jun, Ki-Won, Kwak, Geunjae. Gd/HZSM-5 catalyst for conversion of methanol to hydrocarbons: Effects of amounts of the Gd loading and catalyst preparation method. Applied catalysis. B, Environmental, vol.220, 191-201.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로