$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Significant THz absorption in CH 3 NH 2 molecular defect-incorporated organic-inorganic hybrid perovskite thin film 원문보기

Scientific reports, v.9, 2019년, pp.5811 -   

Maeng, Inhee (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea) ,  Lee, Young Mi (Beamline department, Pohang Accelerator Laboratory, POSTECH, Pohang, 37673 Republic of Korea) ,  Park, Jinwoo (Department of Physics, University of Seoul, Seoul, 02504 Republic of Korea) ,  Raga, Sonia R. (Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 Japan) ,  Kang, Chul (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea) ,  Kee, Chul-Sik (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea) ,  Yu, Byung Deok (Department of Physics, University of Seoul, Seoul, 02504 Republic of Korea) ,  Hong, Suklyun (Graphene Research Institute and Department of Physics, Sejong University, Seoul, 05006 Republic of Korea) ,  Ono, Luis K. (Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 Japan) ,  Qi, Yabing (Energy Materials) ,  Jung, Min-Cherl ,  Nakamura, Masakazu

Abstract AI-Helper 아이콘AI-Helper

The valid strong THz absorption at 1.58 THz was probed in the organic-inorganic hybrid perovskite thin film, CH3NH3PbI3, fabricated by sequential vacuum evaporation method. In usual solution-based methods such as 2-step solution and antisolvent, we observed the relatively weak two main absorption pe...

참고문헌 (36)

  1. 1. Grätzel M The light and shade of perovskite solar cells Nat. Mater. 2014 13 838 842 10.1038/nmat4065 25141800 

  2. 2. Green MA Ho-Baillie A Snaith HJ The emergence of perovskite solar cells Nat. Photonics 2014 8 506 514 10.1038/nphoton.2014.134 

  3. 3. Loi MA Hummelen JC Hybrid solar cells: Perovskites under the Sun Nat. Mater. 2013 12 1087 1089 24257133 

  4. 4. Park, N.-G., Grätzel, M. & Miyasaka T. Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures Ch3 , 53–79 (Springer, 2016). 

  5. 5. Yoo EJ Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3\textminusxClx Perovskite for Resistive Random Access Memory Devices Adv. Mater. 2015 27 6170 6175 10.1002/adma.201502889 26331363 

  6. 6. Huang J Shao Y Dong Q Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond? J. Phys. Chem. Lett. 2015 6 3218 3227 10.1021/acs.jpclett.5b01419 

  7. 7. Stranks SD Snaith HJ Metal-halide perovskites for photovoltaic and light-emitting devices Nat. Nanotechnol. 2015 10 391 402 10.1038/nnano.2015.90 25947963 

  8. 8. Parrott ES Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH3NH3SnI3 Perovskite J. Phys. Chem. Lett. 2016 7 1321 1326 10.1021/acs.jpclett.6b00322 26990282 

  9. 9. Wehrenfennig C Eperon GE Johnston MB Snaith HJ Herz LM High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites Adv. Mater. 2013 26 1584 1589 10.1002/adma.201305172 

  10. 10. Varadwaj, P. R. Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic: A Perspective. Helv . Chim . Acta 100 (2017). 

  11. 11. Im J-H Lee C-R Lee J-W Park S-W Park N-G 6.5% efficient perovskite quantum-dot-sensitized solar cell Nanoscale 2011 3 4088 4093 10.1039/c1nr10867k 21897986 

  12. 12. Fu Y Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications J. Am. Chem. Soc. 2015 137 5810 5818 10.1021/jacs.5b02651 25871732 

  13. 13. Han Q Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties Adv. Mater. 2016 28 2253 2258 10.1002/adma.201505002 26790006 

  14. 14. Tomasino A Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling Sci. Rep. 2013 3 3116 10.1038/srep03116 24173583 

  15. 15. Quarti C The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment J. Phys. Chem. Lett. 2014 5 279 284 10.1021/jz402589q 26270700 

  16. 16. Jung M-C Raga SR Qi Y Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition RSC Adv. 2016 6 2819 2825 10.1039/C5RA21291J 

  17. 17. Leyden MR High performance perovskite solar cells by hybrid chemical vapor deposition J. Mater. Chem. A 2014 2 18742 18745 10.1039/C4TA04385E 

  18. 18. Jung M-C Formation of CH 3 NH 2 -incorporated intermediate state in CH 3 NH 3 PbI 3 hybrid perovskite thin film formed by sequential vacuum evaporation Appl. Phys. Express 2019 12 015501 10.7567/1882-0786/aaf0ac 

  19. 19. JUNG M-C The presence of CH 3NH 2neutral species in organometal halide perovskite films Appl. Phys. Lett. 2016 108 073901 10.1063/1.4941994 

  20. 20. Lee YM Surface Instability of Sn-Based Hybrid Perovskite Thin Film, CH3NH3SnI3: The Origin of Its Material Instability J. Phys. Chem. Lett. 2018 9 2293 2297 10.1021/acs.jpclett.8b00494 29667412 

  21. 21. La-o-vorakiat C Phonon Mode Transformation Across the Orthohombic–Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach J. Phys. Chem. Lett. 2016 7 1 6 10.1021/acs.jpclett.5b02223 26633131 

  22. 22. Brivio F Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide Phys. Rev. B 2015 92 144308 10.1103/PhysRevB.92.144308 

  23. 23. Guzelturk, B. et al . Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron–Phonon Coupling. Adv . Mater . 30 , 1704737 

  24. 24. D’Angelo F Mics Z Bonn M Turchinovich D Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics Opt. Express 2014 22 12475 12485 10.1364/OE.22.012475 24921365 

  25. 25. Tinkham M Energy Gap Interpretation of Experiments on Infrared Transmission through Superconducting Films Phys. Rev. 1956 104 845 846 10.1103/PhysRev.104.845 

  26. 26. Walther M Terahertz conductivity of thin gold films at the metal-insulator percolation transition Phys. Rev. B 2007 76 125408 10.1103/PhysRevB.76.125408 

  27. 27. Doniach S Sunjic M Many-electron singularity in X-ray photoemission and X-ray line spectra from metals J. Phys. C Solid State Phys. 1970 3 285 291 10.1088/0022-3719/3/2/010 

  28. 28. Shirley DA High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold Phys. Rev. B 1972 5 4709 4714 10.1103/PhysRevB.5.4709 

  29. 29. Dietrich PM Amine species on self-assembled monolayers of ω-aminothiolates on gold as identified by XPS and NEXAFS spectroscopy Surf. Interface Anal. 2010 42 1184 1187 10.1002/sia.3224 

  30. 30. Song X Effects of Protonation, Hydrogen Bonding, and Photodamaging on X-ray Spectroscopy of the Amine Terminal Group in Aminothiolate Monolayers J. Phys. Chem. C 2012 116 12649 12654 10.1021/jp302716w 

  31. 31. Ahn N Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide J. Am. Chem. Soc. 2015 137 8696 8699 10.1021/jacs.5b04930 26125203 

  32. 32. Blöchl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 17979 10.1103/PhysRevB.50.17953 

  33. 33. Perdew JP Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces Phys. Rev. Lett. 2008 100 136406 10.1103/PhysRevLett.100.136406 18517979 

  34. 34. Stoffel, R. P., Wessel, C., Lumey, M.-W. & Dronskowski, R. Ab Initio Thermochemistry of Solid-State Materials. Angew . Chem . Int . Ed . 49 , 5242–5266 

  35. 35. Kresse G Furthmüller J Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 1996 54 11169 11186 10.1103/PhysRevB.54.11169 

  36. 36. Togo A Tanaka I First principles phonon calculations in materials science Scr. Mater. 2015 108 1 5 10.1016/j.scriptamat.2015.07.021 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로