$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Neuromusculoskeletal Simulation Reveals Abnormal Rectus Femoris-Gluteus Medius Coupling in Post-stroke Gait 원문보기

Frontiers in neurology, v.10, 2019년, pp.301 -   

Akbas, Tunc ,  Neptune, Richard R. ,  Sulzer, James

Abstract AI-Helper 아이콘AI-Helper

Post-stroke gait is often accompanied by muscle impairments that result in adaptations such as hip circumduction to compensate for lack of knee flexion. Our previous work robotically enhanced knee flexion in individuals post-stroke with Stiff-Knee Gait (SKG), however, this resulted in greater circum...

주제어

참고문헌 (59)

  1. 1. Twitchell TE . ( 1951 ). The restoration of motor function following hemiplegia in man . Brain . 74 : 443 – 80 . 10.1093/brain/74.4.443 14895765 

  2. 2. Perry J Burnfield J Gait Analysis: Normal and Pathological Function . Thorofare, NJ : Slack ( 1992 ). 

  3. 3. Dewald JP Pope PS Given JD Buchanan TS Rymer WZ . Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects . Brain. ( 1995 ) 118 : 495 – 510 . 10.1093/brain/118.2.495 7735890 

  4. 4. Cruz TH Dhaher YY . Evidence of abnormal lower-limb torque coupling after stroke an isometric study . Stroke. ( 2008 ) 39 : 139 – 47 . 10.1161/STROKEAHA.107.492413 18063824 

  5. 5. Neckel ND Blonien N Nichols D Hidler J . Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern . J Neuroeng Rehabil. ( 2008 ) 5 : 19 . 10.1186/1743-0003-5-19 18761735 

  6. 6. Cruz TH Lewek MD Dhaher YY . Biomechanical impairments and gait adaptations post-stroke: multi-factorial associations . J Biomech. ( 2009 ) 42 : 1673 – 7 . 10.1016/j.jbiomech.2009.04.015 19457488 

  7. 7. Sakuma K Ohata K Izumi K Shiotsuka Y Yasui T Ibuki S . Relation between abnormal synergy and gait in patients after stroke . J Neuroeng Rehabil. ( 2014 ) 11 : 141 . 10.1186/1743-0003-11-141 25257123 

  8. 8. Finley JM Perreault EJ Dhaher YY . Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke . Exp Brain Res. ( 2008 ) 188 : 529 – 40 . 10.1007/s00221-008-1383-z 18446331 

  9. 9. Marque P Simonetta-Moreau M Maupas E Roques C . Facilitation of transmission in heteronymous group II pathways in spastic hemiplegic patients . J Neurol Neurosurg Psychiatry. ( 2001 ) 70 : 36 – 42 . 10.1136/jnnp.70.1.36 11118245 

  10. 10. Maupas E Marque P Roques C Simonetta-Moreau M . Modulation of the transmission in group II heteronymous pathways by tizanidine in spastic hemiplegic patients . J Neurol Neurosurg Psychiatry. ( 2004 ) 75 : 130 – 5 . 14707322 

  11. 11. Dyer JO Maupas ES de Andrade Melo A Bourbonnais D Fleury J Forget R . Transmission in heteronymous spinal pathways is modified after stroke and related to motor incoordination . PLoS ONE . ( 2009 ) 4 : e4123 . 10.1371/journal.pone.0004123 19122816 

  12. 12. Dyer JO Maupas ES de Andrade Melo A Bourbonnais D Forget R . Abnormal coactivation of knee and ankle extensors is related to changes in heteronymous spinal pathways after stroke . J Neuroeng Rehabil. ( 2011 ) 8 : 1 . 10.1186/1743-0003-8-41 21226898 

  13. 13. Hidler JM Carroll M Federovich EH . Strength and coordination in the paretic leg of individuals following acute stroke . IEEE Trans Neural Syst Rehabil Eng. ( 2007 ) 15 : 526 – 34 . 10.1109/TNSRE.2007.907689 18198710 

  14. 14. Clark DJ Ting LH Zajac FE Neptune RR Kautz SA . Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke . J Neurophysiol. ( 2009 ) 103 : 844 – 57 . 10.1152/jn.00825.2009 20007501 

  15. 15. Lauziere S Betschart M Aissaoui R Nadeau S Understanding spatial and temporal gait asymmetries in individuals post stroke . Int J Phys Med Rehabil. ( 2014 ) 2 : 2 10.4172/2329-9096.1000201 

  16. 16. Steele KM Rozumalski A Schwartz MH . Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy . Dev Med Child Neurol. ( 2015 ) 57 : 1176 – 82 . 10.1111/dmcn.12826 26084733 

  17. 17. Shuman BR Schwartz MH Steele KM . Electromyography data processing impacts muscle synergies during gait for unimpaired children and children with cerebral palsy . Front Comput Neurosci. ( 2017 ) 11 : 50 . 10.3389/fncom.2017.00050 28634449 

  18. 18. Sulzer JS Roiz RA Peshkin MA Patton JL . A highly backdrivable, lightweight knee actuator for investigating gait in stroke . Robot IEEE Transact. ( 2009 ) 25 : 539 – 48 . 10.1109/TRO.2009.2019788 22563305 

  19. 19. Sulzer JS Gordon KE Dhaher YY Peshkin MA Patton JL . Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke . Stroke. ( 2010 ) 41 : 1709 – 14 . 10.1161/STROKEAHA.110.586917 20576947 

  20. 20. Akbas T Prajapati S Ziemnicki D Tamma P Gross S Sulzer J Hip circumduction is not a compensation for reduced knee flexion angle during gait . J Biomech. ( 2019 ). [Epub ahead of print]. 10.1016/j.jbiomech.2019.02.026 

  21. 21. Tan AQ Dhaher YY . Evaluation of lower limb cross planar kinetic connectivity signatures post-stroke . J Biomech. ( 2014 ) 47 : 949 – 56 . 10.1016/j.jbiomech.2014.01.025 24556125 

  22. 22. Allen JL Kautz SA Neptune RR . The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance . Clin Biomech. ( 2013 ) 28 : 697 – 704 . 10.1016/j.clinbiomech.2013.06.003 23830138 

  23. 23. Zajac FE . Understanding muscle coordination of the human leg with dynamical simulations . J Biomech. ( 2002 ) 35 : 1011 – 8 . 10.1016/S0021-9290(02)00046-5 12126660 

  24. 24. Zajac FE Neptune RR Kautz SA . Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications . Gait Posture. ( 2003 ) 17 : 1 – 17 . 10.1016/S0966-6362(02)00069-3 12535721 

  25. 25. Reinbolt JA Fox MD Arnold AS Õunpuu S Delp SL . Importance of preswing rectus femoris activity in stiff-knee gait . J Biomech. ( 2008 ) 41 : 2362 – 9 . 10.1016/j.jbiomech.2008.05.030 18617180 

  26. 26. Grood ES Suntay WJ Noyes FR Butler D . Biomechanics of the knee-extension exercise . Effect of cutting the anterior cruciate ligament. J Bone Joint Surg Am Vol. ( 1984 ) 66 : 725 – 34 . 10.2106/00004623-198466050-00011 6725319 

  27. 27. Spoor C Van Leeuwen J . Knee muscle moment arms from MRI and from tendon travel . J Biomech. ( 1992 ) 25 : 201 – 6 . 10.1016/0021-9290(92)90276-7 1733995 

  28. 28. Arnold AS Salinas S Hakawa DJ Delp SL . Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity . Comp Aided Surg. ( 2000 ) 5 : 108 – 19 . 10.3109/10929080009148877 10862133 

  29. 29. van der Krogt MM Bar-On L Kindt T Desloovere K Harlaar J Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy . J Neuroeng Rehabil. ( 2016 ) 13 : 64 10.1186/s12984-016-0170-5 27423898 

  30. 30. Arnold EM Delp SL . Fibre operating lengths of human lower limb muscles during walking . Philos Trans R Soc B Biol Sci. ( 2011 ) 366 : 1530 – 9 . 10.1098/rstb.2010.0345 21502124 

  31. 31. Arnold EM Hamner SR Seth A Millard M Delp SL . How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds . J Exp Biol. ( 2013 ) 216 : 2150 – 60 . 10.1242/jeb.075697 23470656 

  32. 32. Mrachacz-Kersting N Lavoie B Andersen JB Sinkjaer T . Characterisation of the quadriceps stretch reflex during the transition from swing to stance phase of human walking . Exp Brain Res. ( 2004 ) 159 : 108 – 22 . 10.1007/s00221-004-1941-y 15221163 

  33. 33. Delp SL Anderson FC Arnold AS Loan P Habib A Thelen DG . OpenSim: open-source software to create and analyze dynamic simulations of movement . Biomed Eng IEEE Trans. ( 2007 ) 54 : 1940 – 50 . 10.1109/TBME.2007.901024 18018689 

  34. 34. Akbas T Sulzer J Implementing a virtual gait assistance device within a musculoskeletal simulation framework . In : 39th Annual Meeting of the American Society of Biomechanics . Columbus, OH ( 2015 ). 

  35. 35. Hicks JL Uchida TK Seth A Rajagopal A Delp SL . Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J Biomech Eng. ( 2015 ) 137 : 020905 . 10.1115/1.4029304 25474098 

  36. 36. Pierrot-Deseilligny E Burke D The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders. Cambridge, UK : Cambridge University Press ( 2005 ). 10.1017/CBO9780511545047 

  37. 37. Reinkensmeyer D Wynne J Harkema S A robotic tool for studying locomotor adaptation and rehabilitation . In: Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference, 2002. Houston, TX : Proceedings of the Second Joint, IEEE ( 2002 ). 

  38. 38. R Development Core Team . R: A Language and Environment for Statistical Computing. Vienna ( 2013 ). 30628467 

  39. 39. Brysbaert M Stevens M Power analysis and effect size in mixed effects models: a tutorial . J Cogn. ( 2018 ). p. 1 – 20 . 10.5334/joc.10 

  40. 40. Kerrigan DC Gronley J Perry J . Stiff-legged gait in spastic paresis. A study of quadriceps and hamstrings muscle activity . Am J Phys Med Rehabil. ( 1991 ) 70 : 294 – 300 . 10.1097/00002060-199112000-00003 1741998 

  41. 41. Goldberg SR Anderson FC Pandy MG Delp SL . Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait . J Biomech. ( 2004 ) 37 : 1189 – 96 . 10.1016/j.jbiomech.2003.12.005 15212924 

  42. 42. Lewek MD Hornby TG Dhaher YY Schmit BD . Prolonged quadriceps activity following imposed hip extension: a neurophysiological mechanism for stiff-knee gait? J Neurophysiol. ( 2007 ) 98 : 3153 – 62 . 10.1152/jn.00726.2007 17898135 

  43. 43. Hesse S Bertelt C Jahnke M Schaffrin A Baake P Malezic M . Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients . Stroke. ( 1995 ) 26 : 976 – 81 . 10.1161/01.STR.26.6.976 7762049 

  44. 44. Mayr A Kofler M Quirbach E Matzak H Fröhlich K Saltuari L . Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis . Neurorehabil Neural Repair. ( 2007 ) 21 : 307 – 14 . 10.1177/1545968307300697 17476001 

  45. 45. Dietz V Berger W . Interlimb coordination of posture in patients with spastic paresis . Brain. ( 1984 ) 107 : 965 – 78 . 10.1093/brain/107.3.965 6478185 

  46. 46. Corna S Grasso M Nardone A Schieppati M . Selective depression of medium-latency leg and foot muscle responses to stretch by an alpha 2-agonist in humans . J Physiol. ( 1995 ) 484 ( Pt 3 ): 803 . 10.1113/jphysiol.1995.sp020705 7623294 

  47. 47. Menegaldo LL de Toledo Fleury A Weber HI . Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model . J Biomech. ( 2004 ) 37 : 1447 – 53 . 10.1016/j.jbiomech.2003.12.017 15275854 

  48. 48. Thelen DG Anderson FC . Using computed muscle control to generate forward dynamic simulations of human walking from experimental data . J Biomech. ( 2006 ) 39 : 1107 – 15 . 10.1016/j.jbiomech.2005.02.010 16023125 

  49. 49. Sandercock TG Heckman C . Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions . J Neurophysiol. ( 1997 ) 77 : 1538 – 52 . 10.1152/jn.1997.77.3.1538 9084618 

  50. 50. Dick TJ Biewener AA Wakeling JM . Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images . J Exp Biol. ( 2017 ) 220 : 1643 – 53 . 10.1242/jeb.154807 28202584 

  51. 51. Lee SS Arnold ASM de Boef Miara AA Wakeling JM . Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models . J Biomech. ( 2013 ) 46 : 2288 – 95 . 10.1016/j.jbiomech.2013.06.001 23871235 

  52. 52. Ward SR Eng CM Smallwood LH Lieber RL . Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Related Res. ( 2009 ) 467 : 1074 – 82 . 10.1007/s11999-008-0594-8 18972175 

  53. 53. Gerus P Rao G Berton E . Subject-specific tendon-aponeurosis definition in Hill-type model predicts higher muscle forces in dynamic tasks . PLoS ONE. ( 2012 ) 7 : e44406 . 10.1371/journal.pone.0044406 22952973 

  54. 54. Perreault EJ Heckman CJ Sandercock TG . Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates . J Biomech. ( 2003 ) 36 : 211 – 8 . 10.1016/S0021-9290(02)00332-9 12547358 

  55. 55. DeMers MS Hicks JL Delp SL . Preparatory co-activation of the ankle muscles may prevent ankle inversion injuries . J Biomech. ( 2017 ) 52 : 17 – 23 . 10.1016/j.jbiomech.2016.11.002 28057351 

  56. 56. Van der Krogt M Seth A Steele K Bar-On L Desloovere K Harlaar J A model of muscle spasticity in opensim . Gait Posture. ( 2013 ) 38 : S16 10.1016/j.gaitpost.2013.07.039 

  57. 57. Jansen K De Groote F Aerts W De Schutter J Duysens J Jonkers I . Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics . J Neuroeng Rehabil. ( 2014 ) 11 : 78 . 10.1186/1743-0003-11-78 24885302 

  58. 58. Demircan E Khatib O Wheeler J Delp S . Reconstruction and EMG-informed control, simulation and analysis of human movement for athletics: Performance improvement and injury prevention . In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, NIH Public Access ( 2009 ). 19964175 

  59. 59. Rajagopal A Dembia CL DeMers MS Delp DD Hicks JL Delp SL . Full-body musculoskeletal model for muscle-driven simulation of human gait . IEEE Trans Biomed Eng. ( 2016 ) 63 : 2068 – 79 . 10.1109/TBME.2016.2586891 27392337 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로