$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Cyclohexene Oxidation with H2O2 over Metal-Organic Framework MIL-125(Ti): The Effect of Protons on Reactivity 원문보기

Catalysts, v.9 no.4, 2019년, pp.324 -   

Maksimchuk, Nataliya (Boreskov Institute of Catalysis, Lavrentieva Ave. 5, Novosibirsk 630090, Russia) ,  Lee, Ji Sun (Research group for nanocatalyst, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea) ,  Ayupov, Artem (Boreskov Institute of Catalysis, Lavrentieva Ave. 5, Novosibirsk 630090, Russia) ,  Chang, Jong-San (Research group for nanocatalyst, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea) ,  Kholdeeva, Oxana (Boreskov Institute of Catalysis, Lavrentieva Ave. 5, Novosibirsk 630090, Russia)

Abstract AI-Helper 아이콘AI-Helper

The catalytic performance of the titanium-based metal-organic framework MIL-125 was evaluated in the selective oxidation of cyclohexene (CyH) with environmentally friendly oxidants, H2O2 and tBuOOH. The catalytic activity of MIL-125 as well as the oxidant utilization efficiency and selectivity towar...

참고문헌 (81)

  1. 10.1002/9783527612963 Sheldon, R.A., and van Bekkum, H. (2001). Epoxidation. Fine Chemicals through Heterogeneous Catalysis, Wiley. [1st ed.]. 

  2. 10.1002/14356007.a09_531 Sienel, G., Rieth, R., and Rowbottom, K.T. (2000). Epoxides. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA. 

  3. Dusi Epoxidation of functionalized olefins over solid catalysts Catal. Rev. Sci. Eng. 2000 10.1081/CR-100100262 42 213 

  4. 10.1007/978-94-017-0984-2 Strukul, G. (1992). Catalytic Oxidations with Hydrogen Peroxide as Oxidant, Kluwer Academic. 

  5. Jones, C.W. (1999). Application of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry. 

  6. 10.1002/9781118356760 Clerici, M.G., and Kholdeeva, O.A. (2013). Environmentally benign oxidants. Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications, Wiley. 

  7. Notari Microporous crystalline titanium silicates Adv. Catal. 1996 10.1016/S0360-0564(08)60042-5 41 253 

  8. 10.1002/9781118356760 Clerici, M.G., and Kholdeeva, O.A. (2013). Oxidation reactions catalyzed by transitionmetal-substituted zeolites. Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications, Wiley. 

  9. 10.1142/p791 Duprez, D., and Cavani, F. (2014). Selective oxidations at Eni. Handbook of Advanced Methods and Processes in Oxidation Catalysis, Imperial College Press. 

  10. 10.1007/978-3-642-14613-8 Schröder, M. (2010). Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, Springer. 

  11. 10.1002/9783527809097 García, H., and Navalón, S. (2018). Metal-Organic Frameworks: Applications in Separations and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA. 

  12. 10.1142/10616 Ma, S., and Perman, J.A. (2018). Elaboration and Applications of Metal-Organic Frameworks, Series on Chemistry, Energy and the Environment, World Scientific Publishing Co. Pte. Ltd. 

  13. Long The pervasive chemistry of metal-organic frameworks Chem. Soc. Rev. 2009 10.1039/b903811f 38 1201 

  14. 10.1016/j.micromeso.2012.04.044 (2012). Special Issue on Metal Organic Frameworks. Micropor. Mesopor. Mater., 157, 1-146. 

  15. 10.1039/C4CS90059F (2014). Themed Issue on Metal-Organic Frameworks. Chem. Soc. Rev., 43, 5415-6172. 

  16. (2016). Special Issue on Chemistry and Applications of Metal Organic Frameworks. Coord. Chem Rev., 307, 105-424. 

  17. (2016). Cluster Issue “Metal-Organic Frameworks Heading towards Application”. Eur. J. Inorg. Chem., 4265-4529. 

  18. (2016). Special Issue on Coordination Polymers/MOFs. ChemPlusChem, 81, 666-898. 

  19. Cui Metal-organic frameworks as platforms for functional materials Acc. Chem. Res. 2016 10.1021/acs.accounts.5b00530 49 483 

  20. Maurin Metal-Organic Frameworks and Porous Polymers-Current and Future Challenges. special issue on MOFs Chem. Soc. Rev. 2017 10.1039/C7CS90049J 46 3104 

  21. 10.1002/9781118356760 Clerici, M.G., and Kholdeeva, O.A. (2013). Liquid phase oxidation of organic compounds by metal-organic frameworks. Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications, Wiley. 

  22. Luz Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction Catal. Sci. Technol. 2013 10.1039/C2CY20449E 3 371 

  23. Leus Metal-organic frameworks as selective or chiral oxidation catalysts Catal Rev. 2014 10.1080/01614940.2014.864145 56 1 

  24. Liu Applications of metal-organic frameworks in heterogeneous supramolecular catalysis Chem. Soc. Rev. 2014 10.1039/C4CS00094C 43 6011 

  25. Gu Metal-organic frameworks as biomimetic catalysts ChemCatChem 2014 10.1002/cctc.201300493 6 67 

  26. Kathalikkattil Advancements in the conversion of carbon dioxide to cyclic carbonates using metal organic frameworks as catalysts Catal. Surv. Asia 2015 10.1007/s10563-015-9196-0 19 223 

  27. Opanasenko Catalytic behavior of metal-organic frameworks and zeolites: Rationalization and comparative analysis Catal. Today 2015 10.1016/j.cattod.2014.06.040 243 2 

  28. Chughtai Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations Chem. Soc. Rev. 2015 10.1039/C4CS00395K 44 6804 

  29. Kholdeeva Liquid-phase selective oxidation catalysis with metal-organic frameworks Catal Today 2016 10.1016/j.cattod.2016.06.010 278 22 

  30. Panchenko Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods Catal. Rev. 2016 10.1080/01614940.2016.1128193 58 209 

  31. Dhakshinamoorthy Metal-organic frameworks as catalysts for oxidation reactions Chem. Eur. J. 2016 10.1002/chem.201505141 22 8012 

  32. He Metal-organic frameworks for CO2 chemical transformations Small 2016 10.1002/smll.201602711 12 6309 

  33. Rogge Metal-organic and covalent organic frameworks as single-site catalysts Chem. Soc. Rev. 2017 10.1039/C7CS00033B 46 3134 

  34. Hu Metal-organic frameworks with Lewis acidity: Synthesis, characterization, and catalytic applications CrystEngComm 2017 10.1039/C6CE02660E 19 4066 

  35. Liang Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks Adv. Mater. 2017 10.1002/adma.201701139 29 1701139 

  36. Dhakshinamoorthy Metal organic frameworks as solid promoters for aerobic autoxidations Catal. Today 2018 10.1016/j.cattod.2017.01.018 306 2 

  37. Dhakshinamoorthy Catalysis and photocatalysis by metal organic frameworks Chem. Soc. Rev. 2018 10.1039/C8CS00256H 47 8134 

  38. Hu Taking organic reactions over metal-organic frameworks as heterogeneous catalysis Micropor. Mesopor. Mater. 2018 10.1016/j.micromeso.2017.07.057 256 111 

  39. Qin Stable metal-organic frameworks as a host platform for catalysis and biomimetics Chem. Commun. 2018 10.1039/C7CC09173G 54 4231 

  40. Kramer Porous organic polymers containing active metal centers as catalysts for synthetic organic chemistry ACS Catal. 2018 10.1021/acscatal.8b01167 8 6961 

  41. Dhakshinamoorthy Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions Green Chem. 2018 10.1039/C7GC02260C 20 86 

  42. Maksimchuk Metal-organic frameworks of the MIL-101 family as heterogeneous single-site catalysts Proc. R. Soc. A 2012 10.1098/rspa.2012.0072 468 2017 

  43. Devic High valence 3p and transition metal based MOFs Chem. Soc. Rev. 2014 10.1039/C4CS00081A 43 6097 

  44. Amador Photosensitive titanium and zirconium metal organic frameworks: Current research and future possibilities Mater. Lett. 2016 10.1016/j.matlet.2015.12.023 166 327 

  45. Sun Robust Ti-and Zr-based metal-organic frameworks for photocatalysis Chin. J. Chem. 2017 10.1002/cjoc.201600647 35 135 

  46. Assi Titanium coordination compounds: From discrete metal complexes to metal-organic frameworks Chem. Soc. Rev. 2017 10.1039/C7CS00001D 46 3431 

  47. Zhu Titanium-based metal-organic frameworks for photocatalytic applications Coord. Chem. Rev. 2018 10.1016/j.ccr.2017.12.013 359 80 

  48. Serre A new photoactive crystalline highly porous titanium (IV) dicarboxylate J. Am. Chem. Soc. 2009 10.1021/ja903726m 131 10857 

  49. Zlotea Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs Dalton Trans. 2011 10.1039/c1dt10115c 40 4879 

  50. Horiuchi Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti (IV) metal-organic framework J. Phys. Chem. C 2012 10.1021/jp3046005 116 20848 

  51. Fu An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction Angew. Chem. 2012 10.1002/anie.201108357 124 3364 

  52. Sun Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125 (Ti) Appl. Catal. B Environm. 2015 10.1016/j.apcatb.2014.09.054 164 428 

  53. Santaclara Organic linker defines the excited-state decay of photocatalytic MIL-125 (Ti)-type materials ChemSusChem 2016 10.1002/cssc.201501353 9 388 

  54. Chambers Maximizing the photocatalytic activity of metal-organic frameworks with aminated-functionalized linkers: Substoichiometric effects in MIL-125-NH2 J. Am. Chem. Soc. 2017 10.1021/jacs.7b02186 139 8222 

  55. 10.1002/adfm.201806368 Kampouri, S., Nguyen, T.N., Spodaryk, M., Palgrave, R.G., Züttel, A., Smit, B., and Stylianou, K.C. (2018). Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation. Adv. Funct. Mater., 1806368. 

  56. Wu Aromatic heterocycle-grafted NH2-MIL-125 (Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light Appl. Catal. B Environm. 2018 10.1016/j.apcatb.2017.10.034 224 479 

  57. Kim Adsorption/catalytic properties of MIL-125 and NH2-MIL-125 Catal. Today 2013 10.1016/j.cattod.2012.08.014 204 85 

  58. McNamara Catalytic performance and stability of (V) MIL-47 and (Ti) MIL-125 in the oxidative desulfurization of heterocyclic aromatic sulfur compounds J. Catal. 2013 10.1016/j.jcat.2013.05.021 305 217 

  59. 10.1002/ejic.201301098 Ivanchikova, I.D., Lee, J.S., Maksimchuk, N.V., Shmakov, A.N., Chesalov, Y.A., Ayupov, A.B., Hwang, Y.K., Jun, C.-H., Chang, J.-S., and Kholdeeva, O.A. (2014). Highly selective H2O2-based oxidation of alkylphenols to p-benzoquinones over MIL-125 metal-organic frameworks. Eur. J. Inorg. Chem., 132-139. 

  60. Kholdeeva Environmentally benign oxidation of alkylphenols to p-benzoquinones: A comparative study of various Ti-containing catalysts Top. Catal. 2014 10.1007/s11244-014-0306-4 57 1377 

  61. Bhadra TiO2-containing carbon derived from a metal-organic framework composite: A highly active catalyst for oxidative desulfurization ACS Appl. Mater. Interfaces 2017 10.1021/acsami.7b10336 9 31192 

  62. Zhang Deep oxidative desulfurization catalyzed by Ti-based metal-organic frameworks Fuel 2018 10.1016/j.fuel.2018.01.050 219 103 

  63. Vermoortele p-Xylene-selective metal-organic frameworks: A case of topology-directed selectivity J. Am. Chem. Soc. 2011 10.1021/ja207287h 133 18526 

  64. Sheldon, R.A., and Kochi, J.K. (1981). Metal-Catalyzed Oxidations of Organic Compounds, Academic Press. 

  65. Kholdeeva Role of protons in methyl phenyl sulfide oxidation with hydrogen peroxide catalyzed by Ti (IV)-monosubstituted heteropolytungstates React. Kinet. Catal. Lett. 1999 10.1007/BF02475806 66 311 

  66. Kamata Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide Science 2003 10.1126/science.1083176 300 964 

  67. Kholdeeva The role of protons in cyclohexene oxidation with H2O2 catalysed by Ti (IV)-monosubstituted Keggin polyoxometalate J. Mol. Catal. A Chem. 2005 10.1016/j.molcata.2005.01.036 232 173 

  68. Kholdeeva Titanium- and zirconium-monosubstituted polyoxometalates as molecular models for studying mechanisms of oxidation catalysis J. Mol. Catal. A Chem. 2007 10.1016/j.molcata.2006.08.023 262 7 

  69. Sartorel Asymmetric tetraprotonation of γ-[(SiO4)W10O32]8− triggers a catalytic epoxidation reaction: Perspectives in the assignment of the active catalyst Angew. Chem. Int. Ed. 2007 10.1002/anie.200605120 46 3255 

  70. Mizuno Oxidative functional group transformations with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate Catal. Today 2012 10.1016/j.cattod.2011.07.007 185 157 

  71. Ivanchikova Alkene oxidation by Ti-containing polyoxometalates. Unambiguous characterization of the role of the protonation state Chem. Commun. 2012 10.1039/c2cc34577c 48 9266 

  72. 10.1002/ejic.201201396 Kholdeeva, O.A. (2013). Hydrogen peroxide activation over TiIV: What have we learned from studies on Ti-containing polyoxometalates?. Eur. J. Inorg. Chem., 1595-1605. 

  73. Satake Synthesis, structural characterization, and oxidation catalysis of a diniobium-substituted silicodecatungstate Chem. Lett. 2015 10.1246/cl.150213 44 899 

  74. Maksimchuk Relevance of protons in heterolytic activation of H2O2 over Nb(V): Insights from model studies on nb-substituted polyoxometalates ACS Catal. 2018 10.1021/acscatal.8b02761 8 9722 

  75. Yoon Mechanism of the decomposition of aqueous hydrogen peroxide over heterogeneous TiSBA15 and TS-1 selective oxidation catalysts: Insights from spectroscopic and density functional theory studies ACS Catal. 2011 10.1021/cs2003774 1 1665 

  76. Bordiga Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques Chem. Rev. 2013 10.1021/cr2000898 113 1736 

  77. 10.1016/j.cattod.2018.04.002 Kholdeeva, O.A., Ivanchikova, I.D., Maksimchuk, N.V., and Skobelev, I.Y. (2018). H2O2-based selective epoxidations: Nb-silicates versus Ti-silicates. Catal. Today. 

  78. Sheldon Heterogeneous catalysts for liquid-phase oxidations: Philosophers’ stones or Trojan horses? Acc. Chem. Res. 1998 10.1021/ar9700163 31 485 

  79. Llabres Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation J. Catal. 2008 10.1016/j.jcat.2008.02.011 255 220 

  80. Torbina Propylene glycol oxidation with tert-butyl hydroperoxide over Cr-containing metal-organic frameworks MIL-101 and MIL-100 Catal. Today 2016 10.1016/j.cattod.2016.04.008 278 97 

  81. Metal-catalyzed hydrocarbon oxygenations in solutions: The dramatic role of additives: A review J. Mol. Catal. A 2002 10.1016/S1381-1169(02)00196-6 189 39 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로