$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors 원문보기

Viruses, v.11 no.4, 2019년, pp.328 -   

Szczepanski, Artur (Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland) ,  Owczarek, Katarzyna (artur.szczepanski@doctoral.uj.edu.pl (A.S.)) ,  Bzowska, Monika (katarzyna.kosowicz@uj.edu.pl (K.O.)) ,  Gula, Katarzyna (Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland) ,  Drebot, Inga (artur.szczepanski@doctoral.uj.edu.pl (A.S.)) ,  Ochman, Marek (katarzyna.kosowicz@uj.edu.pl (K.O.)) ,  Maksym, Beata (Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland) ,  Rajfur, Zenon (monika.bzowska@uj.edu.pl) ,  Mitchell, Judy A (Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland) ,  Pyrc, Krzysztof (katarzyna.gula@uj.edu.pl (K.G.))

Abstract AI-Helper 아이콘AI-Helper

Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, inter...

Keyword

참고문헌 (69)

  1. 1. King M.Q.A. Adams M.J. Carstens E.B. Lefkowitz E.J. Virus Taxonomy Classification and Nomenclature of Viruses Springer Vienna, Austria 2012 

  2. 2. Burkard C. Verheije M.H. Wicht O. van Kasteren S.I. van Kuppeveld F.J. Haagmans B.L. Pelkmans L. Rottier P.J. Bosch B.J. de Haan C.A. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner PLoS Pathog. 2014 10 e1004502 10.1371/journal.ppat.1004502 25375324 

  3. 3. Pyrc K. Berkhout B. van der Hoek L. The novel human coronaviruses NL63 and HKU1 J. Virol. 2007 81 3051 3057 10.1128/JVI.01466-06 17079323 

  4. 4. Zaki A.M. van Boheemen S. Bestebroer T.M. Osterhaus A.D. Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia N. Engl. J. Med. 2012 367 1814 1820 10.1056/NEJMoa1211721 23075143 

  5. 5. Mackay I.M. Arden K.E. MERS coronavirus: Diagnostics, epidemiology and transmission Virol. J. 2015 12 222 10.1186/s12985-015-0439-5 26695637 

  6. 6. Chan J.F. Lau S.K. To K.K. Cheng V.C. Woo P.C. Yuen K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease Clin. Microbiol. Rev. 2015 28 465 522 25810418 

  7. 7. Tamura K. Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees Mol. Biol. Evol. 1993 10 512 526 8336541 

  8. 8. Kumar S. Stecher G. Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol. Biol. Evol. 2016 33 1870 1874 10.1093/molbev/msw054 27004904 

  9. 9. Vlasak R. Luytjes W. Spaan W. Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses Proc. Natl. Acad. Sci. USA 1988 85 4526 4529 10.1073/pnas.85.12.4526 3380803 

  10. 10. Schultze B. Gross H.J. Brossmer R. Herrler G. The s protein of bovine coronavirus is a hemagglutinin recognizing 9- O -acetylated sialic acid as a receptor determinant J. Virol. 1991 65 6232 6237 1920630 

  11. 11. Schultze B. Herrler G. Bovine coronavirus uses n-acetyl-9-o-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells J. Gen. Virol. 1992 73 Pt 4 901 906 10.1099/0022-1317-73-4-901 1321878 

  12. 12. Schwegmann-Wessels C. Herrler G. Sialic acids as receptor determinants for coronaviruses Glycoconj. J. 2006 23 51 58 10.1007/s10719-006-5437-9 16575522 

  13. 13. Huang X. Dong W. Milewska A. Golda A. Qi Y. Zhu Q.K. Marasco W.A. Baric R.S. Sims A.C. Pyrc K. Human coronavirus HKU1 spike protein uses O -acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme J. Virol. 2015 89 7202 7213 25926653 

  14. 14. Strasser P. Unger U. Strobl B. Vilas U. Vlasak R. Recombinant viral sialate- O -acetylesterases Glycoconj. J. 2004 20 551 561 15454694 

  15. 15. Collins A.R. Human coronavirus OC43 interacts with major histocompatibility complex class I molecules at the cell surface to establish infection Immunol. Investig. 1994 23 313 321 10.3109/08820139409066826 7959963 

  16. 16. Collins A.R. HLA class I antigen serves as a receptor for human coronavirus OC43 Immunol. Investig. 1993 22 95 103 8505072 

  17. 17. Chan C.M. Lau S.K. Woo P.C. Tse H. Zheng B.J. Chen L. Huang J.D. Yuen K.Y. Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection J. Virol. 2009 83 1026 1035 10.1128/JVI.01387-08 18987136 

  18. 18. Vijgen L. Keyaerts E. Moes E. Thoelen I. Wollants E. Lemey P. Vandamme A.M. Van Ranst M. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event J. Virol. 2005 79 1595 1604 10.1128/JVI.79.3.1595-1604.2005 15650185 

  19. 19. Kin N. Miszczak F. Diancourt L. Caro V. Moutou F. Vabret A. Ar Gouilh M. Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern Infect. Genet. Evol. 2016 40 186 191 10.1016/j.meegid.2016.03.006 26969241 

  20. 20. Lim Y.X. Ng Y.L. Tam J.P. Liu D.X. Human coronaviruses: A review of virus-host interactions Diseases 2016 4 26 

  21. 21. Decaro N. Buonavoglia C. An update on canine coronaviruses: Viral evolution and pathobiology Vet. Microbiol. 2008 132 221 234 10.1016/j.vetmic.2008.06.007 18635322 

  22. 22. Priestnall S.L. Brownlie J. Dubovi E.J. Erles K. Serological prevalence of canine respiratory coronavirus Vet. Microbiol. 2006 115 43 53 10.1016/j.vetmic.2006.02.008 16551493 

  23. 23. Erles K. Shiu K.B. Brownlie J. Isolation and sequence analysis of canine respiratory coronavirus Virus Res. 2007 124 78 87 17092595 

  24. 24. Bok M. Mino S. Rodriguez D. Badaracco A. Nunes I. Souza S.P. Bilbao G. Louge Uriarte E. Galarza R. Vega C. Molecular and antigenic characterization of bovine coronavirus circulating in argentinean cattle during 1994–2010 Vet. Microbiol. 2015 181 221 229 26520931 

  25. 25. Bidokhti M.R. Traven M. Krishna N.K. Munir M. Belak S. Alenius S. Cortey M. Evolutionary dynamics of bovine coronaviruses: Natural selection pattern of the spike gene implies adaptive evolution of the strains J. Gen. Virol. 2013 94 2036 2049 10.1099/vir.0.054940-0 23804565 

  26. 26. Hick P.M. Read A.J. Lugton I. Busfield F. Dawood K.E. Gabor L. Hornitzky M. Kirkland P.D. Coronavirus infection in intensively managed cattle with respiratory disease Aust. Vet. J. 2012 90 381 386 23004228 

  27. 27. Erles K. Toomey C. Brooks H.W. Brownlie J. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease Virology 2003 310 216 223 10.1016/S0042-6822(03)00160-0 12781709 

  28. 28. Kaneshima T. Hohdatsu T. Hagino R. Hosoya S. Nojiri Y. Murata M. Takano T. Tanabe M. Tsunemitsu H. Koyama H. The infectivity and pathogenicity of a group 2 bovine coronavirus in pups J. Vet. Med. Sci. 2007 69 301 303 10.1292/jvms.69.301 17409649 

  29. 29. Reed L.J. Muench H. A simple method of estimating fifty per cent endpoints Am. J. Epidemiol. 1938 27 493 497 

  30. 30. Milewska A. Kaminski K. Ciejka J. Kosowicz K. Zeglen S. Wojarski J. Nowakowska M. Szczubialka K. Pyrc K. HTCC: Broad range inhibitor of coronavirus entry PLoS ONE 2016 11 e0156552 10.1371/journal.pone.0156552 27249425 

  31. 31. Peters J.H. Baumgarten H. Monoclonal Antibodies Springer Berlin/Heidelberg, Germany 1992 

  32. 32. Kumari K. Gulati S. Smith D.F. Gulati U. Cummings R.D. Air G.M. Receptor binding specificity of recent human H3N2 influenza viruses Virol. J. 2007 4 42 17490484 

  33. 33. Milewska A. Zarebski M. Nowak P. Stozek K. Potempa J. Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells J. Virol. 2014 88 13221 13230 10.1128/JVI.02078-14 25187545 

  34. 34. Schindelin J. Arganda-Carreras I. Frise E. Kaynig V. Longair M. Pietzsch T. Preibisch S. Rueden C. Saalfeld S. Schmid B. Fiji: An open-source platform for biological-image analysis Nat. Methods 2012 9 676 682 10.1038/nmeth.2019 22743772 

  35. 35. Van der Hoek L. Pyrc K. Jebbink M.F. Vermeulen-Oost W. Berkhout R.J. Wolthers K.C. Wertheim-van Dillen P.M. Kaandorp J. Spaargaren J. Berkhout B. Identification of a new human coronavirus Nat. Med. 2004 10 368 373 15034574 

  36. 36. Allen J.D. Ross T.M. H3N2 influenza viruses in humans: Viral mechanisms, evolution, and evaluation Hum. Vaccines Immunother. 2018 14 1840 1847 10.1080/21645515.2018.1462639 29641358 

  37. 37. Krempl C. Schultze B. Herrler G. Analysis of cellular receptors for human coronavirus OC43 Adv. Exp. Med. Biol. 1995 380 371 374 8830510 

  38. 38. Owczarek K. Szczepanski, A. Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Sugar moieties and their role in infectio Material not intended for publication 2018 

  39. 39. Shirato K. Kawase M. Matsuyama S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry Virology 2017 517 9 15 29217279 

  40. 40. Li W. Moore M.J. Vasilieva N. Sui J. Wong S.K. Berne M.A. Somasundaran M. Sullivan J.L. Luzuriaga K. Greenough T.C. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus Nature 2003 426 450 454 10.1038/nature02145 14647384 

  41. 41. Kuba K. Imai Y. Rao S. Gao H. Guo F. Guan B. Huan Y. Yang P. Zhang Y. Deng W. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury Nat. Med. 2005 11 875 879 10.1038/nm1267 16007097 

  42. 42. To K.F. Lo A.W. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-COV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2) J. Pathol. 2004 203 740 743 15221932 

  43. 43. Marzi A. Gramberg T. Simmons G. Moller P. Rennekamp A.J. Krumbiegel M. Geier M. Eisemann J. Turza N. Saunier B. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus J. Virol. 2004 78 12090 12095 10.1128/JVI.78.21.12090-12095.2004 15479853 

  44. 44. Yang Z.Y. Huang Y. Ganesh L. Leung K. Kong W.P. Schwartz O. Subbarao K. Nabel G.J. PH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-sign J. Virol. 2004 78 5642 5650 10.1128/JVI.78.11.5642-5650.2004 15140961 

  45. 45. Chan V.S. Chan K.Y. Chen Y. Poon L.L. Cheung A.N. Zheng B. Chan K.H. Mak W. Ngan H.Y. Xu X. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection Nat. Genet. 2006 38 38 46 10.1038/ng1698 16369534 

  46. 46. Han D.P. Lohani M. Cho M.W. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry J. Virol. 2007 81 12029 12039 10.1128/JVI.00315-07 17715238 

  47. 47. Yu Y.T. Chien S.C. Chen I.Y. Lai C.T. Tsay Y.G. Chang S.C. Chang M.F. Surface vimentin is critical for the cell entry of SARS-CoV J. Biomed. Sci. 2016 23 14 10.1186/s12929-016-0234-7 26801988 

  48. 48. Wang N. Shi X. Jiang L. Zhang S. Wang D. Tong P. Guo D. Fu L. Cui Y. Liu X. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 Cell Res. 2013 23 986 993 10.1038/cr.2013.92 23835475 

  49. 49. Gao W. He W. Zhao K. Lu H. Ren W. Du C. Chen K. Lan Y. Song D. Gao F. Identification of NCAM that interacts with the PHE-CoV spike protein Virol. J. 2010 7 254 10.1186/1743-422X-7-254 20863409 

  50. 50. Qian Z. Ou X. Goes L.G. Osborne C. Castano A. Holmes K.V. Dominguez S.R. Identification of the receptor-binding domain of the spike glycoprotein of human betacoronavirus HKU1 J. Virol. 2015 89 8816 8827 10.1128/JVI.03737-14 26085157 

  51. 51. Mwangi D.W. Bansal D.D. Evidence of free radical participation in n-glycolylneuraminic acid generation in liver of chicken treated with Gallotannic acid Indian J. Biochem. Biophys. 2004 41 20 28 22896904 

  52. 52. Hashimoto Y. Yamakawa T. Tanabe Y. Further studies on the red cell glycolipids of various breeds of dogs. A possible assumption about the origin of Japanese dogs J. Biochem. 1984 96 1777 1782 10.1093/oxfordjournals.jbchem.a135010 6530396 

  53. 53. Davies L.R. Varki A. Why is N -glycolylneuraminic acid rare in the vertebrate brain? Top. Curr. Chem. 2015 366 31 54 23471785 

  54. 54. Yasue S. Handa S. Miyagawa S. Inoue J. Hasegawa A. Yamakawa T. Difference in form of sialic acid in red blood cell glycolipids of different breeds of dogs J. Biochem. 1978 83 1101 1107 10.1093/oxfordjournals.jbchem.a131999 659384 

  55. 55. Corfield A.P. Donapaty S.R. Carrington S.D. Hicks S.J. Schauer R. Kohla G. Identification of 9- O -acetyl- N -acetylneuraminic acid in normal canine pre-ocular tear film secreted mucins and its depletion in keratoconjunctivitis sicca Glycoconj. J. 2005 22 409 416 10.1007/s10719-005-3698-3 16311885 

  56. 56. Kumlin U. Olofsson S. Dimock K. Arnberg N. Sialic acid tissue distribution and influenza virus tropism Influenza Other Respir. Viruses 2008 2 147 154 19453419 

  57. 57. Matrosovich M.N. Matrosovich T.Y. Gray T. Roberts N.A. Klenk H.D. Human and avian influenza viruses target different cell types in cultures of human airway epithelium Proc. Natl. Acad. Sci. USA 2004 101 4620 4624 10.1073/pnas.0308001101 15070767 

  58. 58. Bakkers M.J. Lang Y. Feitsma L.J. Hulswit R.J. de Poot S.A. van Vliet A.L. Margine I. de Groot-Mijnes J.D. van Kuppeveld F.J. Langereis M.A. Betacoronavirus adaptation to humans involved progressive loss of hemagglutinin-esterase lectin activity Cell Host Microbe 2017 21 356 366 10.1016/j.chom.2017.02.008 28279346 

  59. 59. Tan C.W. Sam I.C. Lee V.S. Wong H.V. Chan Y.F. VP1 residues around the five-fold axis of enterovirus A71 mediate heparan sulfate interaction Virology 2017 501 79 87 10.1016/j.virol.2016.11.009 27875780 

  60. 60. Chamberlain K. Fowler V.L. Barnett P.V. Gold S. Wadsworth J. Knowles N.J. Jackson T. Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus J. Gen. Virol. 2015 96 2684 2692 10.1099/jgv.0.000222 26296881 

  61. 61. Chen H.Y. Guo A.Z. Peng B. Zhang M.F. Guo H.Y. Chen H.C. Infection of HeLa cells by avian infectious bronchitis virus is dependent on cell status Avian Pathol. 2007 36 269 274 10.1080/03079450701447291 17620171 

  62. 62. Benfield D.A. Saif L.J. Cell culture propagation of a coronavirus isolated from cows with winter dysentery J. Clin. Microbiol. 1990 28 1454 1457 2166085 

  63. 63. Collins A.R. Interferon gamma potentiates human coronavirus OC43 infection of neuronal cells by modulation of HLA class I expression Immunol. Investig. 1995 24 977 986 10.3109/08820139509060722 8575842 

  64. 64. Pyrc K. Sims A.C. Dijkman R. Jebbink M. Long C. Deming D. Donaldson E. Vabret A. Baric R. van der Hoek L. Culturing the unculturable: Human coronavirus HKU1 infects, replicates, and produces progeny virions in human ciliated airway epithelial cell cultures J. Virol. 2010 84 11255 11263 10.1128/JVI.00947-10 20719951 

  65. 65. Hassan I. Ahmad F. Structural diversity of class I MHC-like molecules and its implications in binding specificities Adv. Protein Chem. Struct. Biol. 2011 83 223 270 21570669 

  66. 66. Patrono L.V. Samuni L. Corman V.M. Nourifar L. Rothemeier C. Wittig R.M. Drosten C. Calvignac-Spencer S. Leendertz F.H. Human coronavirus OC43 outbreak in wild chimpanzees, Cote d’ivoire, 2016 Emerg. Microbes Infect. 2018 7 118 29950583 

  67. 67. Alekseev K.P. Vlasova A.N. Jung K. Hasoksuz M. Zhang X. Halpin R. Wang S. Ghedin E. Spiro D. Saif L.J. Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences J. Virol. 2008 82 12422 12431 10.1128/JVI.01586-08 18842722 

  68. 68. Lu S. Wang Y. Chen Y. Wu B. Qin K. Zhao J. Lou Y. Tan W. Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1 Virus Res. 2017 237 7 13 28506792 

  69. 69. Lau S.K. Lee P. Tsang A.K. Yip C.C. Tse H. Lee R.A. So L.Y. Lau Y.L. Chan K.H. Woo P.C. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination J. Virol. 2011 85 11325 11337 10.1128/JVI.05512-11 21849456 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로