$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Comparison of wind turbine power curves using cup anemometer and pulsed doppler light detection and ranging systems

Journal of mechanical science and technology, v.33 no.4, 2019년, pp.1663 - 1671  

Shin, Dongheon ,  Ko, Kyungnam ,  Kang, Minsang ,  Ryu, Donghun ,  Kang, Munjong ,  Kim, Hyunsik

초록이 없습니다.

참고문헌 (35)

  1. B. Cañadillas, A. Westerhellweg and T. Neumann, Testing the performance of a ground-based wind LiDAR system: One year intercomparison at the offshore platform FTNO1, DEWI Magazine, 38 (2011). 

  2. Remote Sensing S Lang 3 1871 2011 10.3390/rs3091871 S. Lang and E. McKeogh, LIDAR and SODAR measurements of wind speed and direction in upland terrain for wind energy purposes, Remote Sensing, 3 (2011) 1871-1901. 

  3. S Bourgeois 2008 Documentation and Results of the SODAR and LIDAR Measurements at the Maligrad Site in Bosnia and Herzegovina S. Bourgeois, Documentation and Results of the SODAR and LIDAR Measurements at the Maligrad Site in Bosnia and Herzegovina, Meteotest (2008). 

  4. J. Korean Solar Energy Society H G Kim 31 2 63 2011 10.7836/kses.2011.31.2.063 H. G. Kim, C. W. Chyng, H. J. An and Y. M. Ji, Comparative validation of windcube LIDAR and remtech SODAR for wind resource assessment-Remote sensing campaign at Pohang Accelerator Laboratory, J. Korean Solar Energy Society, 31 (2) (2011)63-71. 

  5. J. Korean Solar Energy Society H G Kim 30 4 79 2010 H. G. Kim and H. C. Ji, Uncertainty analysis on wind speed profile measurements of LiDAR by applying SODAR measurements as a virtual true value, J. Korean Solar Energy Society, 30 (4) (2010)79-85. 

  6. J. Wind Eng. Ind Aerodyn. D Y Kim 158 109 2016 10.1016/j.jweia.2016.09.011 D. Y. Kim, T. W. Kim, G. J. Oh, J. C. Huh and K. N. Ko, A comparison of ground-based LiDAR and met mast wind measurements for wind resource assessment over various terrain conditions, J. Wind Eng. Ind Aerodyn., 158 (2016) 109-121. 

  7. Appl Energy Z R Shu 169 150 2016 10.1016/j.apenergy.2016.01.135 Z. R. Shu, Q. S. Li, Y. C. He and P. W. Chan, Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications, Appl Energy, 169 (2016) 150-163. 

  8. Appl Energy Z R Shu 156 362 2015 10.1016/j.apenergy.2015.07.027 Z. R. Shu, Q. S. Li and P. W. Chan, Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function, Appl Energy, 156 (2015) 362-373. 

  9. J. Mech. Sci. Technol S Wan 31 2 965 2017 10.1007/s12206-017-0149-6 S. Wan, L. Cheng and X. Sheng, Numerical analysis of the spatial distribution of equivalent wind speeds in large-scale wind turbines, J. Mech. Sci. Technol, 31 (2) (2017) 965-74. 

  10. International Electrotechnical Commission 2017 Wind Turbine Generator Systems Part 12-1: Power performance Measurements of Electricity Producing Wind Turbines International Electrotechnical Commission, Wind Turbine Generator Systems Part 12-1: Power performance Measurements of Electricity Producing Wind Turbines, Second edition, IEC 61400-12-1 (2017). 

  11. M Courtney 2013 Calibrating Nacelle Lidars M. Courtney, Calibrating Nacelle Lidars, DTU Wind Energy (2013). 

  12. A Borraccino 2015 DTU Wind Energy Report A. Borraccino, M. Courtney and R. Wagner, Generic methodology for calibrating profiling nacelle lidars, DTU Wind Energy Report (2015). 

  13. R Wagner 2013 DTU Wind Energy Report R. Wagner, R. L. Rivera, I. Antoniou, S. Davoust, T. F. Pedersen, M. Courtney and B. Diznabi, Procedure for wind turbine power performance measurement with a two-beam nacelle LiDAR, DTU Wind Energy Report (2013). 

  14. R Wagner 2013 DTU WindEnergy Report R. Wagner and D. Samuel, Nacelle Lidar for power curve meas-urementAvedere campaign, DTU WindEnergy Report (2013). 

  15. R Wagner 2011 EWEA Annual Event R. Wagner, T. F. Pedersen, M. Courtney, J. Gottschall, I. Antoniou, R. Mailer, S. M. Pedersen, T. Velociter, M. Bardon and A. S. Mouritzen, Power performance measured using a nacelle Lidar, EWEA Annual Event (2011). 

  16. R Wagner 2013 EWEA Annual Event R. Wagner, A. Sathe, A. Mioullet and M. Courtney, Turbulence measurement with a two-beam nacelle lidar, EWEA Annual Event (2013). 

  17. S Davoust 2014 Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control S. Davoust, A. Jehu, M. Bouillet, M. Bardon and B. Vercherin, Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control, National Renewable Energy Laboratory (NREL) (2014). 

  18. Journal of Physics: Conference Series 524 1 2014 P. A. Fleming, A. K. Scholbrock, A. Jehu, S. Davoust, E. Osier, A. D. Wright and A. Clifton, Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by reducing yaw misalignment, Journal of Physics: Conference Series, 524 (1) (2014) 012002 IOP Publishing. 

  19. Journal of Physics: Conference Series 555 1 2014 D. Schlipf, P. Fleming, F. Haizmann, A. Scholbrock, M. Hofsäß, A. Wright and P. W. Cheng, Field testing of feedforward collective pitch control on the CART2 using a nacelle-based lidar scanner, Journal of Physics: Conference Series, 555 (1) (2014) 012090. IOP Publishing. 

  20. J. Korean Solar Energy Society D H Shin 37 5 1 2017 10.7836/kses.2017.37.5.001 D. H. Shin, K. N. Ko and M. S. Kang, Characteristics analysis and reliability verification of nacelle lidar measurements, J. Korean Solar Energy Society, 37 (5) (2017) 1-11. 

  21. International Electrotechnical Commission 2005 Wind Turbine Generator Systems Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines International Electrotechnical Commission, Wind Turbine Generator Systems Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines, First Edition, IEC 61400-12-1 (2005). 

  22. A Albers 657 1999 1999 European Wind Energy Conference A. Albers, H. Klug and D. Westermann, Power performance verification, 1999 European Wind Energy Conference, Nice, France (1999) 657-60. 

  23. B Smith 2002 Applicability of Nacelle Anemometer Measurements for Use in Turbine Power Performance Tests B. Smith, H. Link, G. Randall and T. McCoy; Applicability of Nacelle Anemometer Measurements for Use in Turbine Power Performance Tests, National Renewable Energy Laboratory (2002). 

  24. H Suzuki 228 2013 Evaluation of Wind Turbine Power Curve with Nacelle Anemometer H. Suzuki, J. Suzuki, Y. Fujita and A. Muto, Evaluation of Wind Turbine Power Curve with Nacelle Anemometer, Jpn Wind Energy Assoc. (2013) 228-31. 

  25. Sensors W Hernandez 16 6 816 2016 10.3390/s16060816 W. Hernandez, J. L. Lopez-Presa and J. L. Maldonado-Correa, Power performance verification of a wind farm using the Friedman’s test, Sensors, 16 (6) (2016) 816. 

  26. Energy H S Oh 85 23 2015 10.1016/j.energy.2015.02.115 H. S. Oh and B. S. Kim, Comparison and verification of the deviation between guaranteed and measured wind turbine power performance in complex terrain, Energy, 85 (2015) 23-9. 

  27. A Curvers 2008 OWEZ Wind Farm Efficiency A. Curvers and P. A. Van der Werff, OWEZ Wind Farm Efficiency, ECN (2008). 

  28. J. Korean Solar Energy Society H W Kim 33 4 51 2013 10.7836/kses.2013.33.4.051 H. W. Kim, K. N. Ko and J. C. Huh, Wind turbine power performance testing using nacelle transfer function, J. Korean Solar Energy Society, 33 (4) (2013) 51-8. 

  29. International Electrotechnical Commission 2013 Wind Turbine Generator Systems Part 12-2: Power Performance of Electricity-producing Wind Turbines based on Nacelle Anemometry International Electrotechnical Commission, Wind Turbine Generator Systems Part 12-2: Power Performance of Electricity-producing Wind Turbines based on Nacelle Anemometry, First edition, IEC 61400-12-2 (2013). 

  30. J. Mech. Sci. Technol. D H Shin 29 9 1 2015 10.1007/s12206-015-0846-y D. H. Shin, H. W. Kim and K. N. Ko, Analysis of wind turbine degradation via the nacelle transfer function, J. Mech. Sci. Technol., 29 (9) (2015) 1-8. 

  31. Energy D H Shin 118 1180 2017 10.1016/j.energy.2016.10.140 D. H. Shin and K. N. Ko, Comparative analysis of degradation rates for inland and seaside wind turbines in compliance with the International Electrotechnical Commission standard, Energy, 118 (2017) 1180-6. 

  32. https://doi.org/www.iec.ch/dyn/www/f?p=103:38:2235361504226::::FSP_ORG_ID,FSP,APEX_AGE,FS_PROJECT_ID:128 2,23,100113. 

  33. Windcube V2 LiDAR Remote Sensor User Manual version 06, Leoshphere, France. 

  34. Wind Iris User Manual with Software 1.5.1, Avent Lidar Technology. 

  35. M C Brower 2012 Wind Resource Assessment: A Practical Guide to Developing a Wind Project 10.1002/9781118249864 M. C. Brower, Wind Resource Assessment: A Practical Guide to Developing a Wind Project, Wiley (2012). 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로