$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate 원문보기

Nature communications, v.10 no.1, 2019년, pp.1717 -   

Palm, Gottfried J. (Molecular Structural Biology, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Reisky, Lukas (Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Böttcher, Dominique (Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Müller, Henrik (Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Michels, Emil A. P. (Molecular Structural Biology, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Walczak, Miriam C. (Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Berndt, Leona (Molecular Structural Biology, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany) ,  Weiss, Manfred S. (Macromolecular Crystallography, Helmholtz-Zentrum Berlin fü) ,  Bornscheuer, Uwe T. (r Materialien und Energie, Albert-Einstein-Straße15, 12489 Berlin, Germany) ,  Weber, Gert (Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 1)

Abstract AI-Helper 아이콘AI-Helper

The extreme durability of polyethylene terephthalate (PET) debris has rendered it a long-term environmental burden. At the same time, current recycling efforts still lack sustainability. Two recently discovered bacterial enzymes that specifically degrade PET represent a promising solution. First, Id...

참고문헌 (41)

  1. 1. Wood, L. Research and markets. http://www.businesswire.com/news/home/20151210005465/en/Research-Markets-Global-Polyethylene-Terephtalate-Market-PET (Accessed 16 September 2015) 

  2. 2. Geyer R Jambeck JR Law KL Production, use, and fate of all plastics ever made Sci. Adv. 2017 3 e1700782 10.1126/sciadv.1700782 28776036 

  3. 3. Thompson RC Moore CJ vom Saal FS Swan SH Plastics, the environment and human health: current consensus and future trends Philos. Trans. R. Soc. B Biol. Sci. 2009 364 2153 2166 10.1098/rstb.2009.0053 

  4. 4. Hopewell J Dvorak R Kosior E Plastics recycling: challenges and opportunities Philos. Trans. R. Soc. B Biol. Sci. 2009 364 2115 2126 10.1098/rstb.2008.0311 

  5. 5. Eriksen M Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea PLoS ONE 2014 9 e111913 10.1371/journal.pone.0111913 25494041 

  6. 6. Thompson RC Lost at sea: where is all the plastic? Science 2004 304 838 10.1126/science.1094559 15131299 

  7. 7. Rochman CM Policy: classify plastic waste as hazardous Nature 2013 494 169 170 10.1038/494169a 23407523 

  8. 8. Müller RJ Schrader H Profe J Dresler K Deckwer WD Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca Macromol. Rapid Commun. 2005 26 1400 1405 10.1002/marc.200500410 

  9. 9. Silva CM Cutinase—a new tool for biomodification of synthetic fibers J. Polym. Sci. Part A Polym. Chem. 2005 43 2448 2450 10.1002/pola.20684 

  10. 10. Yoshida S A bacterium that degrades and assimilates poly(ethylene terephthalate) Science 2016 351 1196 1199 10.1126/science.aad6359 26965627 

  11. 11. Roth C Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca Appl. Microbiol. Biotechnol. 2014 98 7815 7823 10.1007/s00253-014-5672-0 24728714 

  12. 12. Ronkvist AringM Xie W Lu W Gross RA Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate) Macromolecules 2009 42 5128 5138 10.1021/ma9005318 

  13. 13. Silva C Engineered Thermobifida fusca cutinase with increased activity on polyester substrates Biotechnol. J. 2011 6 1230 1239 10.1002/biot.201000391 21751386 

  14. 14. Araújo R Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers J. Biotechnol. 2007 128 849 857 10.1016/j.jbiotec.2006.12.028 17306400 

  15. 15. Wei R Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition Biotechnol. Bioeng. 2016 113 1658 1665 10.1002/bit.25941 26804057 

  16. 16. Liu B Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis Chembiochem 2018 19 1471 1475 10.1002/cbic.201800097 

  17. 17. Austin HP Characterization and engineering of a plastic-degrading aromatic polyesterase Proc. Natl. Acad. Sci. USA 2018 115 E4350 E4357 10.1073/pnas.1718804115 29666242 

  18. 18. Bornscheuer UT Feeding on plastic Science 2016 351 1154 1155 10.1126/science.aaf2853 26965614 

  19. 19. Fecker T Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase Biophys. J. 2018 114 1302 1312 10.1016/j.bpj.2018.02.005 29590588 

  20. 20. Joo S Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation Nat. Commun. 2018 9 382 10.1038/s41467-018-02881-1 29374183 

  21. 21. Han X Structural insight into catalytic mechanism of PET hydrolase Nat. Commun. 2017 8 2106 10.1038/s41467-017-02255-z 29235460 

  22. 22. Lenfant N ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions Nucleic Acids Res. 2012 41 D423 D429 10.1093/nar/gks1154 23193256 

  23. 23. Zwart PH Automated structure solution with the PHENIX Suite Methods Mol. Biol. 2008 426 419 435 10.1007/978-1-60327-058-8_28 18542881 

  24. 24. Suzuki K Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad Proteins Struct. Funct. Bioinforma. 2014 82 2857 2867 10.1002/prot.24649 

  25. 25. Ren B Crystal structure of tannase from Lactobacillus plantarum J. Mol. Biol. 2013 425 2737 2751 10.1016/j.jmb.2013.04.032 23648840 

  26. 26. Tawfik DS Loop grafting and the origins of enzyme species Science 2006 311 475 476 10.1126/science.1123883 16439649 

  27. 27. Drewitt J. G. N. & Lincoln, J. Polyesters from heterocyclic components. US patent 2551731 (1951). 

  28. 28. King JF ω-Hydroxy-1-alkanesulfonyl chlorides Phosphorous Sulfur Relat. Elem. 1987 31 161 175 10.1080/03086648708079353 

  29. 29. Hong S Min KD Nam BU Park OO High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization Green Chem. 2016 18 5142 5150 10.1039/C6GC01060A 

  30. 30. Li C FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method BMC Biotechnol. 2011 11 92 10.1186/1472-6750-11-92 21992524 

  31. 31. Mueller U Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin J. Synchrotron Radiat. 2012 19 442 449 10.1107/S0909049512006395 22514183 

  32. 32. Cianci M P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing J. Synchrotron Radiat. 2017 24 323 332 10.1107/S1600577516016465 28009574 

  33. 33. Krug M Weiss MS Heinemann U Mueller U XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS J. Appl. Crystallogr. 2012 45 568 572 10.1107/S0021889812011715 

  34. 34. Kabsch W XDS Acta Crystallogr. D Biol. Crystallogr. 2010 66 125 132 10.1107/S0907444909047337 20124692 

  35. 35. Winn MD Overview of the CCP4 suite and current developments Acta Crystallogr. D Biol. Crystallogr. 2011 67 235 242 10.1107/S0907444910045749 21460441 

  36. 36. Afonine PV Towards automated crystallographic structure refinement with phenix.refine Acta Crystallogr. Sect. D Biol. Crystallogr. 2012 68 352 367 10.1107/S0907444912001308 22505256 

  37. 37. Emsley P Lohkamp B Scott WG Cowtan K Features and development of Coot Acta Crystallogr. D. Biol. Crystallogr. 2010 66 486 501 10.1107/S0907444910007493 20383002 

  38. 38. Zhang ZY VanEtten RL Pre-steady-state and steady-state kinetic analysis of the low molecular weight phosphotyrosyl protein phosphatase from bovine heart J. Biol. Chem. 1991 266 1516 1525 1703150 

  39. 39. Altschul SF Gish W Miller W Myers EW Lipman DJ Basic local alignment search tool J. Mol. Biol. 1990 215 403 410 10.1016/S0022-2836(05)80360-2 2231712 

  40. 40. Kumar S Stecher G Tamura K MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol. Biol. Evol. 2016 33 1870 1874 10.1093/molbev/msw054 27004904 

  41. 41. Jones DT Taylor WR Thornton JM The rapid generation of mutation data matrices from protein sequences Comput. Appl. Biosci. 1992 8 275 282 1633570 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로