$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Halloysite nanotubes based electrochemical sensors: A review

Microchemical journal, v.147, 2019년, pp.1083 - 1096  

Goda, Emad S. (Organic Nanomaterials Lab, Department of Chemistry, Hannam University) ,  Gab-Allah, M.A. (Reference Materials Lab, National Institute of Standards) ,  Singu, Bal Sydulu (Organic Nanomaterials Lab, Department of Chemistry, Hannam University) ,  Yoon, Kuk Ro (Organic Nanomaterials Lab, Department of Chemistry, Hannam University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Among the clays, halloysite nanotubes (HNTs) are fabulous hollow tubular type of aluminosilicates due to their interesting properties such as their natural occurrence, high surface area and cytocompatibility. Different ways of functionalization for the inner and surface of HNTs have been u...

주제어

참고문헌 (113)

  1. Mater. Chem. Phys. Attia 168 147 2015 10.1016/j.matchemphys.2015.11.014 Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites 

  2. MAPAN Attia 33 297 2018 10.1007/s12647-018-0254-8 Preparation and certification of novel reference material for smoke density measurements 

  3. J. Mater. Chem. B Massaro 5 2867 2017 10.1039/C7TB00316A Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications 

  4. Trends Anal. Chem. Jain 97 363 2017 10.1016/j.trac.2017.10.009 Polypyrrole based next generation electrochemical sensors and biosensors: a review 

  5. Environ. Sci.: Nano Fakhrullina 2 54 2015 Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study 

  6. Desalination Liu 268 111 2011 10.1016/j.desal.2010.10.006 Adsorption of methyl violet from aqueous solution by halloysite nanotubes 

  7. Compos. Sci. Technol. Deng 69 2497 2009 10.1016/j.compscitech.2009.07.001 Halloysite-epoxy nanocomposites with improved particle dispersion through ball mill homogenization and chemical treatments 

  8. Int Du 59 574 2010 Newly emerging applications of halloysite nanotubes: a review Polym 

  9. Ther. Deliv. Lazzara 8 633 2017 10.4155/tde-2017-0041 Clay-based drug-delivery systems: what does the future hold? 

  10. J. Am. Chem. Soc. Yah 134 12134 2012 10.1021/ja303340f Biomimetic dopamine derivative for selective polymer modification of Halloysite nanotube lumen 

  11. ACS Appl. Mater. Interfaces Abdullayev 5 4464 2013 10.1021/am400936m Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys 

  12. Int. J. Nanomedicine Lee 7 1635 2012 A nanohybrid system for taste masking of sildenafil 

  13. Biomacromol Vergaro 11 820 2010 10.1021/bm9014446 Cytocompatibility and uptake of halloysite clay nanotubes 

  14. Polym. Mater. Sci. Eng. Vergaro 104 6 2011 Halloysite clay nanotubes: novel carriers for cancer therapy 

  15. J. Phys. Chem. C Yuan 112 15742 2008 10.1021/jp805657t Functionalization of Halloysite clay nanotubes by grafting with γ- Aminopropyltriethoxysilane 

  16. Int. J. Pharm. Levis 243 125 2002 10.1016/S0378-5173(02)00274-0 Characterisation of halloysite for use as a microtubular drug delivery system 

  17. Ceska Slov. Farm. Krejcova 62 71 2013 Optimization of diclofenac sodium profile from halloysite nanotubules 

  18. Int. J. Pharm. Levis 253 145 2003 10.1016/S0378-5173(02)00702-0 Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride 

  19. Pet. Chem. Shehata 57 1007 2017 10.1134/S096554411712012X Simple spectrophotometric method for determination of iron in crude oil 

  20. Nanoscale Res. Lett. Shi 6 608 2011 10.1186/1556-276X-6-608 Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides 

  21. Appl. Clay Sci. Cornejo-Garrido 57 10 2012 10.1016/j.clay.2011.12.001 The anti-inflammatory properties of halloysite 

  22. Adv. Mater. Lvov 28 1227 2016 10.1002/adma.201502341 Halloysite clay nanotubes for loading and sustained release of functional compounds 

  23. Int. J. Pharm. Riela 475 613 2014 10.1016/j.ijpharm.2014.09.019 Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity 

  24. J. Mater. Chem. B Massaro 3 4074 2015 10.1039/C5TB00564G Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells 

  25. RSC Adv. Massaro 6 87935 2016 10.1039/C6RA14657K Dual drug-loaded halloysite hybrid-based glycocluster for sustained release of hydrophobic molecules 

  26. MAPAN Shehata 32 101 2017 10.1007/s12647-017-0205-9 Development of crude oil reference material certified for the concentrations of sulfur, iron, nickel, vanadium and magnesium 

  27. Int. J. Pharm. Massaro 478 476 2015 10.1016/j.ijpharm.2014.12.004 

  28. Adv. Colloid Interf. Sci. Tharmavaram 261 82 2018 10.1016/j.cis.2018.09.001 Surface modified halloysite nanotubes: a flexible interface for biological, environmental and catalytic applications 

  29. Chem. Eng. J. Feng 331 744 2018 10.1016/j.cej.2017.09.023 Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes 

  30. J. Biomed. Mater. Res., Part B Ghaderi-Ghahfarrokhi 5 1276 2018 10.1002/jbm.a.36327 Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes 

  31. Appl. Clay Sci. Cataldo 156 87 2018 10.1016/j.clay.2018.01.028 Functionalized halloysite nanotubes for enhanced removal of lead(II) ions from aqueous solutions 

  32. RSC Adv. Sun 5 52916 2015 10.1039/C5RA04444H Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry 

  33. J. Appl. Polym. Sci. Li 112 2647 2009 10.1002/app.29652 A general synthesis approach toward halloysite-based composite nanotube 

  34. RSC Adv. Kang 7 24140 2017 10.1039/C7RA02987J Functionalization of halloysite nanotubes (HNTs) via mussel-inspired surface modification and silane grafting for HNTs/soy protein isolate nanocomposite film preparation 

  35. J. Phys. Chem. C Yuan 112 15742 2008 10.1021/jp805657t Functionalization of Halloysite clay nanotubes by grafting with γ-Aminopropyltriethoxysilane 

  36. Langmuir Owoseni 30 2014 10.1021/la503687b Release of surfactant cargo from Interfacially-active Halloysite clay nanotubes for oil spill remediation 

  37. Langmuir Cavallaro 31 7472 2015 10.1021/acs.langmuir.5b01181 Hydrophobically modified Halloysite nanotubes as reverse micelles for water-in-oil emulsion 

  38. Phys. Chem. Miner. Lun 41 281 2014 10.1007/s00269-013-0646-9 Enhancing dispersion of halloysite nanotubes via chemical modification 

  39. Anal. Bioanal. Chem. Liu 410 7357 2018 10.1007/s00216-018-1348-4 Novel mixed hemimicelles based on nonionic surfactant-imidazolium ionic liquid and magnetic halloysite nanotubes as efficient approach for analytical determination 

  40. Polym Zeng 55 6519 2014 10.1016/j.polymer.2014.10.044 Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications 

  41. Anal. Chem. Zhang 83 7531 2011 10.1021/ac201864f Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction 

  42. Nanotechnology Rachel 23 2012 The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions 

  43. Polym Zeng 55 6519 2014 10.1016/j.polymer.2014.10.044 Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications 

  44. J. Mineral. Petrol. Sci. Tamada 107 87 2012 10.2465/jmps.110909 Silica dissolution catalyzed by NaOH: reaction kinetics and energy barriers simulated by quantum mechanical strategies 

  45. Adv. Colloid Interf. Sci. Tharmavaram 261 82 2018 10.1016/j.cis.2018.09.001 Surface modified halloysite nanotubes: a flexible interface for biological, environmental and catalytic applications 

  46. Compos. Interfaces Kubade 5 469 2016 10.1080/09276440.2016.1235442 Influence of surface modification of halloysite nanotubes and its localization in PP phase on mechanical and thermal properties of PP/ABS blends 

  47. RSC Adv. Zhu 8 10522 2018 10.1039/C8RA01373J Modified halloysite nanotube filled polyimide composites for film capacitors: high dielectric constant, low dielectric loss and excellent heat resistance 

  48. Colloids Surf., B Mehdi 170 322 2018 10.1016/j.colsurfb.2018.06.042 Preparation of multifunctional PEG-graft-Halloysite nanotubes for controlled drug release, tumor cell targeting, and bio-imaging 

  49. J. Membr. Sci. Liu 557 13 2018 10.1016/j.memsci.2018.04.019 The influence of sulfonated hyperbranched polyethersulfone-modified halloysite nanotubes on the compatibility and water separation performance of polyethersulfone hybrid ultrafiltration membranes 

  50. Prog. Org. Coat. Yilmaz 127 266 2019 10.1016/j.porgcoat.2018.11.026 High performance nanocomposite coatings based on soft core-reactive shell polyacrylic latex/modified halloysite nanotubes 

  51. Prog. Polym. Sci. Liu 39 1498 2014 10.1016/j.progpolymsci.2014.04.004 Recent advance in research on halloysite nanotubes-polymer nanocomposite 

  52. Thermochim. Acta Goda 669 173 2018 10.1016/j.tca.2018.09.017 Halloysite nanotubes as smart flame retardant and economic reinforcing materials: a review 

  53. Adv. Mater. Xia 8 765 1996 10.1002/adma.19960080915 Shadowed sputtering of gold on V-shaped microtrenches etched in Si and applications in microfabrication 

  54. Langmuir Ho 18 9625 2002 10.1021/la0260988 Orthogonal self-aligned electroless metallization by molecular self-assembly 

  55. 10.1063/1.122340 A. Inoue, T. Ishida, N. Choi, W. Mizutani, H. Tokumoto, Nanometer-scale patterning of self-assembled monolayer films on native silicon oxide, H. Appl. Phys. Lett. 73 (1998) 1976-1978. 

  56. J. Am. Chem. Soc. Yah 134 1853 2012 10.1021/ja210258y Selective modification of Halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle 

  57. Boonkongkaew 6 14 10181 2018 Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 

  58. Polym. Eng. Sci. Sahnoune 1 2018 Fire retardancy effect of phosphorus-modified halloysite on polyamide-11 nanocomposites 

  59. J. Therm. Anal. Calorim. Horvath 71 707 2003 10.1023/A:1023301504396 Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions 

  60. Appl. Clay Sci. Joussein 35 17 2007 10.1016/j.clay.2006.07.002 Behavior of halloysite clay under formamide treatment 

  61. J. Mater. Chem. Breen 12 273 2002 10.1039/b104254h The thermal stability of mixed phenylphosphonic acid/water intercalates of kaolin and halloysite. A TG-EGA and VT-DRIFTS study 

  62. Polym. Adv. Technol. Marney 23 1564 2012 10.1002/pat.3030 Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6 

  63. Microporous Mesoporous Mater. Rosas-Aburto 218 118 2015 10.1016/j.micromeso.2015.06.032 Intercalation of poly(3,4-ethylenedioxythiophene) within halloysite nanotubes: synthesis of composites with improved thermal and electrical properties 

  64. Biosens. Bioelectron. Goud 121 205 2018 10.1016/j.bios.2018.08.029 Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review 

  65. Trac-Trends Analyt. Chem. Azzouz 113 256 2019 10.1016/j.trac.2019.02.017 Advances in functional nanomaterial-based electrochemical techniques for screening of endocrine disrupting chemicals in various sample matrices 

  66. Biosens. Bioelectron. Kempahanumakkagari 95 106 2017 10.1016/j.bios.2017.04.013 Nanomaterial-based electrochemical sensors for arsenic - a review 

  67. Trac-Trends Analyt. Chem. Azzouza 108 347 2018 10.1016/j.trac.2018.08.009 Review of nanomaterials as sorbents in solid-phase extraction for environmental samples 

  68. J. Electrochem. Soc. Stetter 150 11 2003 10.1149/1.1539051 Sensors, chemical sensors, electrochemical sensors, and ECS 

  69. RSC Adv. Govindhan 4 63741 2014 10.1039/C4RA10399H Nanomaterials-based electrochemical detection of chemical contaminants 

  70. Rev. Adv. Mater. Sci. Rawtani 30 282 2012 Multifarious applications of halloysite nanotubes: a review 

  71. RSC Adv. Yang 6 58329 2016 10.1039/C6RA06366G Non-enzymatic sensor based on a glassy carbon electrode modified with ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing 

  72. Biosens. Bioelectron. Ghanei-Motlagh 109 279 2018 10.1016/j.bios.2018.02.057 A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing 

  73. Electrochim. Acta Lin 56 1030 2011 10.1016/j.electacta.2010.10.058 Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection 

  74. Measurement Terbouche 92 524 2016 10.1016/j.measurement.2016.06.034 A new electrochemical sensor based on carbon paste electrode/Ru(III) complex for determination of nitrite: electrochemical impedance and cyclic voltammetry measurements 

  75. Sensors Actuators B Chem. Salimi 205 136 2014 10.1016/j.snb.2014.08.035 Highly sensitive electrocatalytic detection of nitrite based on SiC nanoparticles/amine terminated ionic liquid modified glassy carbon electrode integrated with flow injection analysis 

  76. ACS Appl. Mater. Interfaces Yang 10 5933?5940 2018 Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing 

  77. Anal. Biochem. Lee 408 206?211 2011 10.1016/j.ab.2010.09.026 Carbon nanotube-assisted enhancement of surface plasmon resonance signal 

  78. Sensors Actuators B Chem. Chen 201 433?438 2014 10.1016/j.snb.2014.04.040 Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid 

  79. Plasmonics Jain 2 107?118 2007 10.1007/s11468-007-9031-1 Review of some interesting surface Plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to Biosystems 

  80. Sensors Actuators B Chem. Verma 160 623?631 2011 10.1016/j.snb.2011.08.039 Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers 

  81. Opt. Express Wu 18 14395 2010 10.1364/OE.18.014395 Highly sensitive graphene biosensors based on surface plasmon resonance 

  82. J. Phys. Chem. B Lee 110 19220 2006 10.1021/jp062536y Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition 

  83. J. Am. Chem. Soc. Malinsky 123 1471?1482 2001 10.1021/ja003312a Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers 

  84. Sensors Actuators B Chem. Singh 177 589?595 2013 10.1016/j.snb.2012.11.094 Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration 

  85. Xiong 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) Modeling of halloysite-nanotube modified surface plasmon resonance sensor 

  86. New J. Chem. Zhang 40 9672 2016 10.1039/C6NJ02103D Synthesis of Au nanoparticles dispersed on halloysite nanotubes-reduced graphene oxide nanosheets and their application for nitrites electrochemical sensing 

  87. Electrochim. Acta Shao 255 286 2017 10.1016/j.electacta.2017.09.178 A highly sensitive ascorbic acid sensor based on hierarchical polyaniline coated Halloysite nanotubes prepared by electrophoretic deposition 

  88. J. Mater. Chem. B Zhou 2 4122 2014 10.1039/c4tb00485j Diameter-controlled synthesis of polyaniline microtubes and their electrocatalytic oxidation of ascorbic acid 

  89. RSC Adv. Zhang 5 26878 2015 10.1039/C5RA01390A Synthesis of Ag-HNTs-MnO2 nanocomposites and their application for nonenzymatic hydrogen peroxide electrochemical sensing 

  90. Talanta Li 82 1637 2010 10.1016/j.talanta.2010.07.020 A novel nonenzymatic hydrogen peroxide sensor based on MnO2 graphene oxide nanocomposite 

  91. Electroanalysis Hocevar 16 1706 2004 10.1002/elan.200303019 Glucose microbiosensor based on MnO2 and glucose oxidase modified carbon fiber microelectrode 

  92. Talanta Xia 107 55 2013 10.1016/j.talanta.2012.12.055 A sensitive enzymeless sensor for hydrogen peroxide based on the polynucleotide-templated silver nanoclusters/graphene modified electrode 

  93. Sensors Actuators B Chem. Heli 192 310 2014 10.1016/j.snb.2013.10.124 Enhanced electrocatalytic reduction and highly sensitive nonenzymatic detection of hydrogen peroxide using platinum hierarchical nanoflowers 

  94. Electrochim. Acta Miao 99 117 2013 10.1016/j.electacta.2013.03.063 A novel hydrogen peroxide sensor based on ag/SnO2 composite nanotubes by electrospinning 

  95. Talanta Lu 112 111 2013 10.1016/j.talanta.2013.03.010 Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor 

  96. Anal. Biochem. Cao 430 111 2012 10.1016/j.ab.2012.08.014 Electrochemical sensing based on gold nanoparticle-decorated halloysite nanotube composites 

  97. Anal. Methods Sheng 7 6896 2015 10.1039/C5AY01329A Electrodeposition of prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing 

  98. Bull. Kor. Chem. Soc. Cheng 35 2423 2014 10.5012/bkcs.2014.35.8.2423 Template synthesis of nitrogen-doped short tubular carbons with big inner diameter and their application in electrochemical sensing 

  99. RSC Adv. Wang 6 29142 2016 10.1039/C6RA02817A A high-performance bioanode based on a nitrogen-doped short tubular carbon loaded au nanoparticle co-immobilized mediator and glucose oxidase for glucose/O2 biofuel cells 

  100. NANO Zhang 13 1850019 2018 10.1142/S1793292018500194 Preparation of tubular HNTs@PDA-Au nanocomposites and its electrocatalysis of hydrazine 

  101. Sensors Actuators B Chem. Fayazia 228 1 2016 10.1016/j.snb.2015.12.107 Fe3O4 and MnO2 assembled on halloysite nanotubes: a highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions 

  102. Chin. Chem. Lett. Cheng 27 81 2016 10.1016/j.cclet.2015.08.002 Preparation of nano-CuO-loaded halloysite nanotubes with high catalytic activity for selective oxidation of cyclohexene 

  103. J. Electroanal. Chem. Wu 762 51 2016 10.1016/j.jelechem.2015.12.030 Nonenzymatic sensing of glucose using a glassy carbon electrode modified with halloysite nanotubes heavily loaded with palladium nanoparticles 

  104. 10.1371/journal.pone.0006451 B. Xing and X. Yin, Novel poly-dopamine adhesive for a Halloysite nanotube-Ru(bpy)32+ electrochemiluminescent sensor, PLoS One 4(7): e6451 (8pp). 

  105. Fresenius Z. Anal. Chem. Cammann 287 1 1977 10.1007/BF00539519 Biosensors based on ion-selective electrodes 

  106. Pure Appl. Chem. Thevenot 71 2333 1999 10.1351/pac199971122333 Electrochemical biosensors: recommended definitions and classification 

  107. J. Oral. Biol. Craniofac. Res. Mehrotra 6 153 2016 10.1016/j.jobcr.2015.12.002 Biosensors and their applications - a review 

  108. J. Mater. Chem. B Kumar-Krishnan 4 2553 2016 10.1039/C6TB00051G Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing 

  109. Dalton Trans. Das 44 8906 2015 10.1039/C5DT00830A A facile approach to fabricate halloysite/metal nanocomposites with preformed and in situ synthesized metal nanoparticles: a comparative study of their enhanced catalytic activity 

  110. ACS Appl. Mater. Interfaces Chao 5 10559 2013 10.1021/am4022973 Surface modification of halloysite nanotubes with dopamine for enzyme immobilization 

  111. Analyst Brondani 21 3732 2012 10.1039/c2an35313j Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor 

  112. J. Electrochem. Soc. Meenakshi 163 B543 2016 10.1149/2.0891610jes Simultaneous voltammetry detection of dopamine and uric acid in pharmaceutical products and urine samples using ferrocene carboxylic acid primed nanoclay modified glassy carbon electrode 

  113. Anal. Bioanal. Chem. Li 409 3245 2017 10.1007/s00216-017-0266-1 An ultrasensitive electrochemical immunosensor for the detection of prostate specific antigen based on conductivity nanocomposite with halloysite nanotubes 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로