$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fatigue strengthening of carbon/carbon composites modified with carbon nanotubes and silicon carbide nanowires

International journal of fatigue, v.124, 2019년, pp.411 - 421  

Shen, Qingliang (Corresponding authors.) ,  Song, Qiang (Corresponding authors.) ,  Li, Hejun ,  Xiao, Caixiang ,  Wang, Tiyuan ,  Lin, Hongjiao ,  Li, Wei

Abstract AI-Helper 아이콘AI-Helper

Abstract Fatigue strengthening of composites refers to the increase of residual strength after a specific number of loading cycles. This eccentric behavior widely exists in carbon/carbon composites and some ceramic matrix composites while few reasonable mechanisms have been proposed. In the present...

주제어

참고문헌 (61)

  1. Compos Sci Technol Hatta 65 2550 2005 10.1016/j.compscitech.2005.07.012 Strengths of C/C composites under tensile, shear, and compressive loading: role of interfacial shear strength 

  2. Compos Sci Technol Dietrich 72 1892 2012 10.1016/j.compscitech.2012.08.009 Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions 

  3. 2018 Comprehensive composite materials II 

  4. Chung 387 2017 Carbon composites (Second Edition) 7 - carbon-matrix composites 

  5. J Mater Sci Technol Cheng 34 1243 2018 10.1016/j.jmst.2017.05.010 Effect of matrix sub-layer interfacial fracture on residual strength improvement of the fatigued carbon/carbon composites 

  6. Compos Sci Technol Goto 65 1044 2005 10.1016/j.compscitech.2004.09.031 Fatigue behavior of 2D laminate C/C composites at room temperature 

  7. Carbon Goto 41 1249 2003 10.1016/S0008-6223(03)00040-X Tensile fatigue of a laminated carbon-carbon composite at room temperature 

  8. 2015 Structural integrity and durability of advanced composites: innovative modelling methods and intelligent design 

  9. Ceram Int Li 42 14505 2016 10.1016/j.ceramint.2016.06.061 Strength evolution of cyclic loaded LSI-based C/C-SiC composites 

  10. Int J Fatigue Fang 80 298 2015 10.1016/j.ijfatigue.2015.06.019 A residual strength model for the fatigue strengthening behavior of 2D needled CMCs 

  11. Compos Part A-Appl Sci Manuf Mohammadi 93 163 2017 10.1016/j.compositesa.2016.11.021 Development of a continuum damage model for fatigue life prediction of laminated composites 

  12. Int J Fatigue Xue 68 248 2014 10.1016/j.ijfatigue.2014.04.011 Monitoring the damage evolution of flexural fatigue in unidirectional carbon/carbon composites by electrical resistance change method 

  13. Sci China Ser E: Technol Sci Han 46 337 2003 10.1360/02ye0316 Micro-pleating in carbon-carbon composites under a cyclic load 

  14. Carbon Tanabe 42 1665 2004 10.1016/j.carbon.2004.02.022 Fatigue of C/C composites in bending and in shear modes 

  15. J Eur Ceram Soc Morales-Rodriguez 27 3301 2007 10.1016/j.jeurceramsoc.2007.02.180 Strength enhancement of 2D-SiCf/SiC composites after static fatigue at room temperature 

  16. Compos Part A-Appl Sci Manuf Li 95 315 2017 10.1016/j.compositesa.2017.01.024 Mechanical behavior of LSI based C/C-SiC composites subjected to flexural loadings 

  17. J Test Eval Rasuo 39 237 2011 Experimental techniques for evaluation of fatigue characteristics of laminated constructions from composite materials: full-scale testing of the helicopter rotor blades 

  18. Int J Crashworthiness Rasuo 12 9 2007 10.1533/ijcr.2006.0135 Experimental methodology for evaluating survivability of an aeronautical construction from composite materials: an overview 

  19. Reifsnider K, Stinchcomb WW, O'Brien TK. Frequency effects on a stiffness-based fatigue failure criterion in flawed composite specimens; 1977. 

  20. Mater Des Fang 89 432 2016 10.1016/j.matdes.2015.10.013 Effect of the stress level on the fatigue strengthening behavior of 2D needled C/SiC CMCs at room temperature 

  21. J Compos Mater Hahn 10 156 1976 10.1177/002199837601000205 Fatigue behavior of composite laminate 

  22. Mater Sci Eng A-Struct Mater Properties Microstruct Process Li 695 221 2017 10.1016/j.msea.2017.04.035 Modeling strength degradation of fiber-reinforced ceramic-matrix composites under cyclic loading at room and elevated temperatures 

  23. Mater Sci Eng A Xiao 528 3056 2011 10.1016/j.msea.2010.11.067 Effect of in situ grown carbon nanotubes on the structure and mechanical properties of unidirectional carbon/carbon composites 

  24. J Alloy Compd Kou 694 1054 2017 10.1016/j.jallcom.2016.10.151 Microstructure and flexural properties of C/C-Cu composites strengthened with in-situ grown carbon nanotubes 

  25. Ceram Int Li 41 1943 2015 10.1016/j.ceramint.2014.07.134 Simultaneous improvements in flexural strength and ductility of carbon nanotube-doped carbon/carbon composites by depositing a pyrocarbon layer on carbon fibers 

  26. Carbon Song 50 3949 2012 10.1016/j.carbon.2012.03.023 Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites 

  27. Compos Sci Technol Mei 115 28 2015 10.1016/j.compscitech.2015.04.005 Carbon nanotubes introduced in different phases of C/PyC/SiC composites: effect on microstructure and properties of the materials 

  28. Mater Sci Eng A-Struct Mater Properties Microstruct Process Song 564 71 2013 10.1016/j.msea.2012.11.074 The reinforcement and toughening of pyrocarbon-based carbon/carbon composite by controlling carbon nanotube growth position in carbon felt 

  29. Carbon Wang 129 409 2018 10.1016/j.carbon.2017.12.028 The influences of carbon nanotubes introduced in three different phases of carbon fiber/pyrolytic carbon/silicon carbide composites on microstructure and properties of their composites 

  30. J Alloy Compd Shen 738 49 2018 10.1016/j.jallcom.2017.12.111 Realizing the synergy of carbon nanotubes and matrix microstructure for improved flexural behavior of laminated carbon/carbon composites 

  31. J Mater Chem C Shen 6 5888 2018 10.1039/C8TC01313F Simultaneously improving the mechanical strength and electromagnetic interference shielding of carbon/carbon composites by electrophoretic deposition of SiC nanowires 

  32. Compos B Eng Treviso 78 144 2015 10.1016/j.compositesb.2015.03.081 Damping in composite materials: Properties and models 

  33. J Am Ceram Soc Emmanuel 78 2709 1995 10.1111/j.1151-2916.1995.tb08046.x Relationships between hysteresis measurements and the constituent properties of ceramic matrix composites: I. Theory 

  34. Text Res J Li 88 532 2018 10.1177/0040517516681965 Damage evolution of carbon fiber-reinforced ceramic-matrix composites with different fiber preforms using the fatigue hysteresis loop area 

  35. J Am Ceram Soc Turner 78 1841 1995 10.1111/j.1151-2916.1995.tb08897.x Mechanisms of deformation and failure in carbon-matrix composites subject to tensile and shear loading 

  36. Carbon Hou 38 2095 2000 10.1016/S0008-6223(00)00069-5 Internal friction behavior of carbon-carbon composites 

  37. Mater Sci Eng A-Struct Mater Properties Microstruct Process Cheng 600 129 2014 10.1016/j.msea.2014.02.020 Internal friction behavior of unidirectional carbon/carbon composites after different fatigue cycles 

  38. Carbon Shengru 35 389 1997 10.1016/S0008-6223(96)00165-0 The internal friction of unidirectional C/C composites fabricated in a magnetic field 

  39. J Alloy Compd Kogo 355 148 2003 10.1016/S0925-8388(03)00254-8 Internal friction of carbon-carbon composites at elevated temperatures 

  40. J Am Ceram Soc Goto 84 1327 2001 10.1111/j.1151-2916.2001.tb00837.x Effect of shear damage on the fracture behavior of carbon-carbon composites 

  41. Mater Sci Eng A Qingliang 651 583 2016 10.1016/j.msea.2015.10.114 SiC nanowire reinforced carbon/carbon composites with improved interlaminar strength 

  42. J Alloy Compd Wen 618 336 2015 10.1016/j.jallcom.2014.08.209 Enhancement of the oxidation resistance of C/C composites by depositing SiC nanowires onto carbon fibers by electrophoretic deposition 

  43. Carbon Pradere 46 1874 2008 10.1016/j.carbon.2008.07.035 Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300-2500 K) 

  44. Carbon Price 5 423 1967 10.1016/0008-6223(67)90018-8 Thermal expansivities and preferred orientation of pyrolytic carbons 

  45. Compos A Appl Sci Manuf Parlevliet 38 651 2007 10.1016/j.compositesa.2006.07.002 Residual stresses in thermoplastic composites-a study of the literature-Part II: Experimental techniques 

  46. Nat Commun Frank 2 255 2011 10.1038/ncomms1247 Development of a universal stress sensor for graphene and carbon fibres 

  47. Phys Rev B Mohiuddin 79 205433 2009 10.1103/PhysRevB.79.205433 Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation 

  48. Nat Mater Ritchie 10 817 2011 10.1038/nmat3115 The conflicts between strength and toughness 

  49. J Heart Valve Dis Ritchie 5 S9 1996 Fatigue and fracture of pyrolytic carbon: a damage-tolerant approach to structural integrity and life prediction in “ceramic” heart valve prostheses 

  50. Adv Mater Launey 21 2103 2009 10.1002/adma.200803322 On the fracture toughness of advanced materials 

  51. Acta Metall Faber 31 565 1983 10.1016/0001-6160(83)90046-9 Crack deflection processes-I. Theory 

  52. Lawn 1993 Fracture of brittle solids 

  53. J Biomed Mater Res Dauskardt 28 791 1994 10.1002/jbm.820280706 Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses - role of small cracks in life prediction 

  54. Nat Commun Liu 8 15942 2017 10.1038/ncomms15942 Damage tolerance of nuclear graphite at elevated temperatures 

  55. Carbon Mostafavi 59 325 2013 10.1016/j.carbon.2013.03.025 Flexural strength and defect behaviour of polygranular graphite under different states of stress 

  56. Carbon Liu 114 261 2017 10.1016/j.carbon.2016.11.084 Deformation and fracture of carbonaceous materials using in situ micro-mechanical testing 

  57. Carbon Berto 50 1942 2012 10.1016/j.carbon.2011.12.045 Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading 

  58. J Nucl Mater Wen 381 199 2008 10.1016/j.jnucmat.2008.07.012 Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG) 

  59. J Am Ceram Soc Ken 84 1327 2001 Effect of shear damage on the fracture behavior of carbon-carbon composites 

  60. Carbon Chowdhury 126 382 2018 10.1016/j.carbon.2017.10.019 Damage tolerance of carbon-carbon composites in aerospace application 

  61. Metall Trans A Suresh 14 2375 1983 10.1007/BF02663313 Crack deflection: implications for the growth of long and short fatigue cracks 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로