$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Comparison of cooling plate configurations for automotive battery pack thermal management

Applied thermal engineering, v.155, 2019년, pp.185 - 195  

Darcovich, K. (National Research Council of Canada, Energy, Mining and Environment Research Centre) ,  MacNeil, D.D. (National Research Council of Canada, Energy, Mining and Environment Research Centre) ,  Recoskie, S. (National Research Council of Canada, Energy, Mining and Environment Research Centre) ,  Cadic, Q. (ICAM-Toulouse) ,  Ilinca, F. (National Research Council of Canada, Automotive and Surface Transportation Research Centre)

Abstract AI-Helper 아이콘AI-Helper

Abstract A numerical simulation was developed combining micro and macro scale models, to determine the thermal state of battery packs in electric vehicles. A spatially resolved Ohm’s law model was integrated with the single particle model to resolve the electrochemistry in prismatic cells, an...

주제어

참고문헌 (51)

  1. Renew. Sustain. Energy Rev. Hannan 29 135 2014 10.1016/j.rser.2013.08.097 Hybrid electric vehicles and their challenges: a review 

  2. IEEE Trans. Power Electron. Yilmaz 28 5 2151 2013 10.1109/TPEL.2012.2212917 Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles 

  3. J. Power Sources Barre 241 680 2013 10.1016/j.jpowsour.2013.05.040 A review on lithium-ion battery ageing mechanisms and estimations for automotive applications 

  4. J. Power Sources Lu 226 272 2013 10.1016/j.jpowsour.2012.10.060 A review on the key issues for lithium-ion battery management in electric vehicles 

  5. Appl. Therm. Eng. Darcovich 133 566 2018 10.1016/j.applthermaleng.2018.01.094 Coupled electrochemical and thermal battery models for thermal management of prismatic automotive cells 

  6. J. Electrochem. Energy Convers. Storage Darcovich 15 2 021004-1 2018 10.1115/1.4038631 Coupled numerical approach for automotive battery pack lifetime estimates with thermal management 

  7. Appl. Therm. Eng. Kim 149 192 2019 10.1016/j.applthermaleng.2018.12.020 Review on battery thermal management system for electric vehicles 

  8. J. Power Sources Jarrett 196 10359 2011 10.1016/j.jpowsour.2011.06.090 Design optimization of electric vehicle battery cooling plates for thermal performance 

  9. SAE Int. J. Alt. Powertrains Teng 1 2 525 2012 10.4271/2012-01-2017 Design of direct and indirect liquid cooling systems for high-capacity, high-power lithium-ion battery packs 

  10. 10.4271/2016-01-1217 E. Yen, K.-H. Chen, T. Han, B. Khalighi, Application of CAEBAT Full Field Approach for a Liquid-Cooled Automotive Battery Pack, SAE Technical Paper 2016-01-1217, SAE 2016 World Congress and Exhibition, Detroit, MI, USA, April 12-14, 2016. 

  11. Int. J. Heat Mass Transf. Panchal 109 1239 2017 10.1016/j.ijheatmasstransfer.2017.03.005 Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery 

  12. Int. J. Heat Mass Transf. Panchal 135 368 2019 10.1016/j.ijheatmasstransfer.2019.01.076 Heat and mass transfer modeling and investigation of multiple LiFePO4/graphite batteries in a pack at low C-rates with water-cooling 

  13. J. Power Sources Jarrett 245 644 2014 10.1016/j.jpowsour.2013.06.114 Influence of operating conditions on the optimum design of electric vehicle battery cooling plates 

  14. J. Power Sources Sun 206 349 2012 10.1016/j.jpowsour.2012.01.081 Three-dimensional thermal modeling of a lithium-ion battery pack 

  15. Appl. Therm. Eng. Moradikazerouni 150 1078 2019 10.1016/j.applthermaleng.2019.01.051 Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board 

  16. Appl. Therm. Eng. Li 147 829 2019 10.1016/j.applthermaleng.2018.11.009 Three-dimensional thermal modeling of Li-ion battery cell and 50 V Li-ion battery pack cooled by mini-channel cold plate 

  17. Int. J. Therm. Sci. Tong 94 259 2015 10.1016/j.ijthermalsci.2015.03.005 Numerical investigation of water cooling for a lithium-ion bipolar battery pack 

  18. Appl. Therm. Eng. Wang 151 475 2019 10.1016/j.applthermaleng.2019.02.036 Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells 

  19. Appl. Energy Basu 181 1 2016 10.1016/j.apenergy.2016.08.049 Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system 

  20. Appl. Therm. Eng. Malik 129 472 2018 10.1016/j.applthermaleng.2017.10.029 Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling 

  21. D.R. Weber, R.M. Brisbane, Cooling plate for lithium-ion battery pack, US Patent US 2015/0044523 A1, 12 February 2015, 9 pp. 

  22. N. Bachmann, J. Meintschel, D. Schroter, Battery (e.g. high-power or high-voltage batteries) has cooling device and intermediate frame that are connected with output conductor of individual battery cells, German Patent DE 10 2012 018113 A1, 13 March 2014, 14 pp. 

  23. B. Boddakayala, Cooling system for vehicle batteries, US Patent US 2013/0183555 A1, 18 July 2013, 16 pp. 

  24. S Nicholls, Vehicle battery pack, a system for cooling a battery pack and a cooling plate for use in the system, US Patent US 2015/0140366 A1, 21 May 2015, 30 pp. 

  25. A. Betz, J. Helber, G. Johanntokrax, F. Maier, M. Meier, N Winterholler, Floor plate for a battery, in particular a traction battery, and the traction battery, German Patent DE 10 2016 008110 A1, 23 February 2017, 10 pp. 

  26. K. Smith, E. Wood, S. Santhanagopalan, G.-H. Kim, A. Pesaran, Advanced Models and Controls for Prediction and Extension of Battery Lifetime. Advanced Automotive Battery Conference, Atlanta, GA, USA, February 4-6, 2014. 

  27. 10.1109/VPPC.2009.5289803 V. Marano, S. Onori, Y. Guezennec, G. Rizzoni, N. Madella, Lithium-ion batteries life estimation for plug-in hybrid electric vehicles. IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, September 7-11, 2009, pp. 536-543. 

  28. Energy Policy Lunz 46 511 2012 10.1016/j.enpol.2012.04.017 Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs 

  29. J. Power Sources Peterson 195 8 2385 2010 10.1016/j.jpowsour.2009.10.010 Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization 

  30. Appl. Therm. Eng. Darcovich 114 1515 2017 10.1016/j.applthermaleng.2016.07.002 Effect on battery life of vehicle-to-home electric power provision under Canadian residential electrical demand 

  31. J. Electrochem. Soc. Ning 151 A1584 2004 10.1149/1.1787631 Cycle life modeling of lithium-ion batteries 

  32. J. Power Sources Rahimian 196 20 8450 2011 10.1016/j.jpowsour.2011.06.007 Comparison of single particle and equivalent circuit analog models for a lithium-ion cell 

  33. J. Power Sources Rahimian 196 10297 2011 10.1016/j.jpowsour.2011.07.019 Optimal charge rates for a lithium ion cell 

  34. J. Electrochem. Soc. Guo 158 A122 2011 10.1149/1.3521314 Single-particle model for a lithium-ion cell: thermal behavior 

  35. J. Electrochem. Soc. Doyle 143 1890 1996 10.1149/1.1836921 Comparison of modeling predictions with experimental data from plastic lithium ion cells 

  36. J. Power Sources Kwon 163 1 151 2006 10.1016/j.jpowsour.2006.03.012 A two-dimensional modeling of a lithium-polymer battery 

  37. J. Power Sources Kim 180 2 909 2008 10.1016/j.jpowsour.2007.09.054 Effect of electrode configuration on the thermal behavior of a lithium-polymer battery 

  38. J. Power Sources Kim 189 1 841 2009 10.1016/j.jpowsour.2008.10.019 Modeling for the scale-up of a lithium-ion polymer battery 

  39. J. Power Sources Kim 196 11 5115 2011 10.1016/j.jpowsour.2011.01.103 Modelling the thermal behaviour of a lithium-ion battery during charge 

  40. J. Electrochem. Soc. Valoen 152 5 A882 2005 10.1149/1.1872737 Transport properties of LiPF6-based Li-ion battery electrolytes 

  41. J. Power Sources Kenney 213 391 2012 10.1016/j.jpowsour.2012.03.065 Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules 

  42. J. Electrochem. Soc. Kumaresan 155 2 A164 2008 10.1149/1.2817888 Thermal model for a Li-ion cell 

  43. J. Power Sources Wu 243 544 2013 10.1016/j.jpowsour.2013.05.164 Coupled thermalel ectrochemical modelling of uneven heat generation in lithium-ion battery packs 

  44. ECS Trans. Li 64 33 1 2015 10.1149/06433.0001ecst Physics-based CFD simulation of lithium-ion battery under the FUDS driving cycle 

  45. J. Electrochem. Soc. Yi 160 3 A437 2013 10.1149/2.039303jes Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire 

  46. F. Cverna (Ed.), ASM ready reference: thermal properties of metals, ASM International, 2002, p. 560. 

  47. I.T. Yun, L.G. Chem, Product Specification, Rechargeable Lithium Ion Battery, Model: ICR18650S2 2200mA, January 2003, 8 pp. 

  48. F.R. Kalhammer, B.M. Kopf, D.H. Swan, V.P. Roan, M.P. Walsh, Status and prospects for zero emissions vehicle technology, Report of the ARB Independent Expert Panel, State of California Air Resources Board, 2007, 207 pp. 

  49. T. Maric, J. Hopken, K. Mooney, The OpenFOAM technology primer, Sourceflux Publ., Duisburg, 2014, pp. 455. 

  50. https://www.epa.gov/vehicle-and-fuel-emissions-testing, update of March 24, 2016. 

  51. J. Power Sources Xu 240 33 2013 10.1016/j.jpowsour.2013.03.004 Research on the heat dissipation performance of battery pack based on forced air cooling 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로