$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells

Biomaterials, v.219, 2019년, pp.119401 -   

Yong, Seok-Beom (Department of Bioengineering, Hanyang University) ,  Chung, Jee Young ,  Song, Yoonsung ,  Kim, Jaehyun ,  Ra, Sehee ,  Kim, Yong-Hee

Abstract AI-Helper 아이콘AI-Helper

Abstract The tumor microenvironmental immune cells (TMICs) consists of myeloid cells (tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, etc.) and lymphocytes (T cells and B cells), all of which could be immunologically suppressed through their interactions with cancer...

주제어

참고문헌 (137)

  1. Nature Reviews Cancer Kalluri 16 9 582 2016 10.1038/nrc.2016.73 The biology and function of fibroblasts in cancer 

  2. Cold Spring Harbor perspectives in medicine Dudley 2 3 a006536 2012 10.1101/cshperspect.a006536 Tumor endothelial cells 

  3. Nature medicine Binnewies 1 2018 Understanding the tumor immune microenvironment (TIME) for effective therapy 

  4. Nature Reviews Cancer Engblom 16 7 447 2016 10.1038/nrc.2016.54 The role of myeloid cells in cancer therapies 

  5. British journal of cancer Gooden 105 1 93 2011 10.1038/bjc.2011.189 The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis 

  6. The Lancet Moslehi 391 10124 933 2018 10.1016/S0140-6736(18)30533-6 Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis 

  7. The Journal of Immunology Rosenberg 192 12 5451 2014 10.4049/jimmunol.1490019 IL-2: the first effective immunotherapy for human cancer 

  8. FEBS letters Kyi 588 2 368 2014 10.1016/j.febslet.2013.10.015 Checkpoint blocking antibodies in cancer immunotherapy 

  9. Science June 359 6382 1361 2018 10.1126/science.aar6711 CAR T cell immunotherapy for human cancer 

  10. Science Sharma 348 6230 56 2015 10.1126/science.aaa8172 The future of immune checkpoint therapy 

  11. New England Journal of Medicine Postow 378 2 158 2018 10.1056/NEJMra1703481 Immune-related adverse events associated with immune checkpoint blockade 

  12. Nature medicine Giavridis 24 6 731 2018 10.1038/s41591-018-0041-7 CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade 

  13. Nature medicine Norelli 24 6 739 2018 10.1038/s41591-018-0036-4 Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells 

  14. Advanced drug delivery reviews Milling 114 79 2017 10.1016/j.addr.2017.05.011 Delivering safer immunotherapies for cancer 

  15. Bioconjugate chemistry Nakamura 27 10 2225 2016 10.1021/acs.bioconjchem.6b00437 Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? 

  16. Proceedings of the National Academy of Sciences Tang 111 43 15344 2014 10.1073/pnas.1411499111 Investigating the optimal size of anticancer nanomedicine 

  17. Nature nanotechnology Cabral 6 12 815 2011 10.1038/nnano.2011.166 Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size 

  18. Nature nanotechnology Matsumoto 11 6 533 2016 10.1038/nnano.2015.342 Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery 

  19. Biomaterials Yoon 178 597 2018 10.1016/j.biomaterials.2018.03.036 Engineering nanoparticle strategies for effective cancer immunotherapy 

  20. Journal of oncology Schmid 2010 2010 10.1155/2010/201026 Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation 

  21. Nanomedicine Vinogradov 9 5 695 2014 10.2217/nnm.14.13 Macrophages associated with tumors as potential targets and therapeutic intermediates 

  22. Movahedi 0008 2010 Different Tumor Microenvironments Contain Functionally Distinct Subsets of Macrophages Derived from Ly6C (High) Monocytes 

  23. Immunity Noy 41 1 49 2014 10.1016/j.immuni.2014.06.010 Tumor-associated macrophages: from mechanisms to therapy 

  24. Cell Qian 141 1 39 2010 10.1016/j.cell.2010.03.014 Macrophage diversity enhances tumor progression and metastasis 

  25. Frontiers in immunology Adeegbe 4 190 2013 10.3389/fimmu.2013.00190 Natural and induced T regulatory cells in cancer 

  26. Cell Condeelis 124 2 263 2006 10.1016/j.cell.2006.01.007 Macrophages: obligate partners for tumor cell migration, invasion, and metastasis 

  27. Cancer research Wyckoff 67 6 2649 2007 10.1158/0008-5472.CAN-06-1823 Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors 

  28. J Cell Biol Liou 202 3 563 2013 10.1083/jcb.201301001 Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-κB and MMPs 

  29. Nature medicine Quail 19 11 1423 2013 10.1038/nm.3394 Microenvironmental regulation of tumor progression and metastasis 

  30. PloS one Qian 4 8 2009 10.1371/journal.pone.0006562 A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth 

  31. Proceedings of the National Academy of Sciences Cortez-Retamozo 109 7 2491 2012 10.1073/pnas.1113744109 Origins of tumor-associated macrophages and neutrophils 

  32. Science Franklin 1252510 2014 The cellular and molecular origin of tumor-associated macrophages 

  33. DeNardo 2011 Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy 

  34. Nature medicine Pyonteck 19 10 1264 2013 10.1038/nm.3337 CSF-1R inhibition alters macrophage polarization and blocks glioma progression 

  35. Cancer research Mitchem 73 3 1128 2013 10.1158/0008-5472.CAN-12-2731 Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses 

  36. Science Pucci 352 6282 242 2016 10.1126/science.aaf1328 SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions 

  37. Trends in immunology Kumar 37 3 208 2016 10.1016/j.it.2016.01.004 The nature of myeloid-derived suppressor cells in the tumor microenvironment 

  38. cell Hanahan 144 5 646 2011 10.1016/j.cell.2011.02.013 Hallmarks of cancer: the next generation 

  39. Nature Reviews Immunology Wherry 15 486 2015 10.1038/nri3862 Molecular and cellular insights into T cell exhaustion 

  40. Nature Reviews Immunology Wang 17 591 2017 10.1038/nri.2017.87 The pros and cons of dying tumour cells in adaptive immune responses 

  41. OncoImmunology Loos 6 1 2017 Identification of inhibitors of myeloid-derived suppressor cells activity through phenotypic chemical screening 

  42. Cell Death & Disease Jiang 6 2015 10.1038/cddis.2015.162 T-cell exhaustion in the tumor microenvironment 

  43. Cancer Cell Johnston 26 6 923 2014 10.1016/j.ccell.2014.10.018 The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function 

  44. The Journal of Clinical Investigation Chauvin 125 5 2046 2015 10.1172/JCI80445 TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients 

  45. Clinical Cancer Research Zarour 22 8 1856 2016 10.1158/1078-0432.CCR-15-1849 Reversing T-cell dysfunction and exhaustion in cancer 

  46. The Journal of Experimental Medicine Voron 212 2 139 2015 10.1084/jem.20140559 VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors 

  47. The Journal of Immunology Zanetti 194 5 2049 2015 10.4049/jimmunol.1402669 Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics 

  48. Corthay 195 2007 Crossroads between Innate and Adaptive Immunity CD4+ T cells cooperate with macrophages for specific elimination of MHC class II-negative cancer cells 

  49. Vaccines Chaudhary 4 3 28 2016 10.3390/vaccines4030028 Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting 

  50. Trends in Cancer Wang 3 8 583 2017 10.1016/j.trecan.2017.06.005 Metabolic regulation of tregs in cancer: opportunities for immunotherapy 

  51. J Clin Cell Immunol Young 7 3 431 2016 10.4172/2155-9899.1000431 Th17 cells in protection from tumor or promotion of tumor progression 

  52. The American journal of pathology Ye 182 1 10 2013 10.1016/j.ajpath.2012.08.041 The role and regulation of human Th17 cells in tumor immunity 

  53. Cancer Research Tel 73 3 1063 2013 10.1158/0008-5472.CAN-12-2583 Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients 

  54. Clinical Cancer Research Schreibelt 22 9 2155 2016 10.1158/1078-0432.CCR-15-2205 Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells 

  55. The Journal of Immunology Steinbrink 197 5 1547 2016 Pillars article: induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 1997. 159: 4772-4780 

  56. The Journal of Experimental Medicine Hawiger 194 6 769 2001 10.1084/jem.194.6.769 Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo 

  57. The Journal of Experimental Medicine Jonuleit 192 9 1213 2000 10.1084/jem.192.9.1213 Induction of interleukin 10-producing, nonproliferating Cd4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells 

  58. The Journal of Immunology Krempski 186 12 6905 2011 10.4049/jimmunol.1100274 Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer 

  59. Nature Communications Laoui 7 13720 2016 10.1038/ncomms13720 The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity 

  60. The Journal of Experimental Medicine Hoves 215 3 859 2018 10.1084/jem.20171440 Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity 

  61. Cancer Research Zhu 74 18 5057 2014 10.1158/0008-5472.CAN-13-3723 CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models 

  62. Nature Guerriero 543 428 2017 10.1038/nature21409 Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages 

  63. Cell Reports Georgoudaki 15 9 2000 2016 10.1016/j.celrep.2016.04.084 Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis 

  64. Proceedings of the National Academy of Sciences Love 107 5 1864 2010 10.1073/pnas.0910603106 Lipid-like materials for low-dose, in vivo gene silencing 

  65. Nature Biotechnology Leuschner 29 1005 2011 10.1038/nbt.1989 Therapeutic siRNA silencing in inflammatory monocytes in mice 

  66. Molecular Pharmaceutics Shen 15 9 3642 2018 10.1021/acs.molpharmaceut.7b00997 Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and cancer therapy 

  67. Theranostics Sun 5 6 597 2015 10.7150/thno.11546 Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer 

  68. Theranostics Zhang 7 17 4276 2017 10.7150/thno.20999 Noninvasive imaging of CD206-positive M2 macrophages as an early biomarker for post-chemotherapy tumor relapse and lymph node metastasis 

  69. Molecular Pharmaceutics Yu 10 3 975 2013 10.1021/mp300434e Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles 

  70. Molecular Pharmaceutics Zhu 10 9 3525 2013 10.1021/mp400216r Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles 

  71. Molecular Pharmaceutics Niu 13 6 1833 2016 10.1021/acs.molpharmaceut.5b00987 Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer 

  72. Biomaterials Song 185 117 2018 10.1016/j.biomaterials.2018.09.017 Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells 

  73. Nano Letters Peng 17 12 7684 2017 10.1021/acs.nanolett.7b03756 Reprogramming tumor-associated macrophages to reverse EGFRT790M resistance by dual-targeting codelivery of gefitinib/vorinostat 

  74. Nano Letters Shi 18 11 7330 2018 10.1021/acs.nanolett.8b03568 Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration 

  75. Journal of Controlled Release Huang 158 2 286 2012 10.1016/j.jconrel.2011.11.013 Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy 

  76. Biomaterials Liu 134 166 2017 10.1016/j.biomaterials.2017.04.043 Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy 

  77. Biomacromolecules Liu 19 6 2146 2018 10.1021/acs.biomac.8b00239 ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy 

  78. Clinical Cancer Research Muliaditan 24 7 1617 2018 10.1158/1078-0432.CCR-17-2587 Repurposing tin mesoporphyrin as an immune checkpoint inhibitor shows therapeutic efficacy in preclinical models of cancer 

  79. Proceedings of the National Academy of Sciences Cieslewicz 110 40 15919 2013 10.1073/pnas.1312197110 Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival 

  80. Advanced Functional Materials Conde 25 27 4183 2015 10.1002/adfm.201501283 Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells 

  81. ACS Nano Qian 11 9 9536 2017 10.1021/acsnano.7b05465 Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages 

  82. Proceedings of the National Academy of Sciences Li 113 15 4164 2016 10.1073/pnas.1522080113 Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy 

  83. Nano letters Shen 17 6 3822 2017 10.1021/acs.nanolett.7b01193 Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy 

  84. Scientific reports Van Hoeven 7 46426 2017 10.1038/srep46426 A formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines 

  85. Nature biomedical engineering Rodell 2 8 578 2018 10.1038/s41551-018-0236-8 TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy 

  86. Science translational medicine Miller 7 314 2015 10.1126/scitranslmed.aac6522 Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle 

  87. Advanced Healthcare Materials Rios de la Rosa 6 4 1601012 2017 10.1002/adhm.201601012 The CD44-mediated uptake of hyaluronic acid-based carriers in macrophages 

  88. Nano Letters Parayath 18 6 3571 2018 10.1021/acs.nanolett.8b00689 Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating MicroRNA-125b 

  89. Clinical Cancer Research Tolcher 23 18 5349 2017 10.1158/1078-0432.CCR-17-1243 Phase ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors 

  90. Blood Buchan 131 1 39 2018 10.1182/blood-2017-07-741025 The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy 

  91. Nature Reviews Drug Discovery Riley 2019 10.1038/s41573-018-0006-z Delivery technologies for cancer immunotherapy 

  92. Biomaterials Sunshine 35 1 269 2014 10.1016/j.biomaterials.2013.09.050 Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells 

  93. Biochemical and Biophysical Research Communications Han 411 3 530 2011 10.1016/j.bbrc.2011.06.164 A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro 

  94. ACS Nano Perica 8 3 2252 2014 10.1021/nn405520d Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity 

  95. ACS Nano Kosmides 11 6 5417 2017 10.1021/acsnano.6b08152 Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth 

  96. Advanced Materials Mi 30 25 1706098 2018 10.1002/adma.201706098 A dual immunotherapy nanoparticle improves T-cell activation and cancer immunotherapy 

  97. Nano letters Cheng 18 5 3250 2018 10.1021/acs.nanolett.8b01071 Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy 

  98. Journal of Controlled Release Li 231 17 2016 10.1016/j.jconrel.2016.01.044 Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation 

  99. Nature Communications Lim 6 8244 2015 10.1038/ncomms9244 dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis 

  100. Nature Communications Kim 9 1 503 2018 10.1038/s41467-017-02731-6 Regulation of chitinase-3-like-1 in T cell elicits Th1 and cytotoxic responses to inhibit lung metastasis 

  101. Nature Communications Schmid 8 1 1747 2017 10.1038/s41467-017-01830-8 T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity 

  102. Biomaterials Science Yang 7 1 113 2019 10.1039/C8BM01208C Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles 

  103. Proceedings of the National Academy of Sciences Onda 116 10 4575 2019 10.1073/pnas.1820388116 Depletion of regulatory T cells in tumors with an anti-CD25 immunotoxin induces CD8 T cell-mediated systemic antitumor immunity 

  104. Nature medicine Zappasodi 25 5 759 2019 10.1038/s41591-019-0420-8 Rational design of anti-GITR-based combination immunotherapy 

  105. Nature Delgoffe 501 252 2013 10.1038/nature12428 Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis 

  106. Journal of Controlled Release Ou 281 84 2018 10.1016/j.jconrel.2018.05.018 Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy 

  107. Cancers Grandclement 3 2 1899 2011 10.3390/cancers3021899 Neuropilins: a new target for cancer therapy 

  108. Bioconjugate chemistry Sacchetti 24 6 852 2013 10.1021/bc400070q In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes 

  109. Theranostics Ou 8 17 4574 2018 10.7150/thno.26758 Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy 

  110. Molecular Therapy - Methods & Clinical Development Levine 4 92 2017 10.1016/j.omtm.2016.12.006 Global manufacturing of CAR T cell therapy 

  111. Nature Nanotechnology Smith 12 813 2017 10.1038/nnano.2017.57 In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers 

  112. Biomaterials Thomas 35 2 814 2014 10.1016/j.biomaterials.2013.10.003 Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response 

  113. The Journal of Clinical Investigation Cubillos-Ruiz 119 8 2231 2009 Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity 

  114. Cancer Research Cubillos-Ruiz 72 7 1683 2012 10.1158/0008-5472.CAN-11-3160 Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer 

  115. Vaccines Shirota 3 2 390 2015 10.3390/vaccines3020390 CpG oligonucleotides as cancer vaccine adjuvants 

  116. Nature Reviews Immunology Yu 7 41 2007 10.1038/nri1995 Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment 

  117. Nature Biotechnology Kortylewski 27 925 2009 10.1038/nbt.1564 In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses 

  118. Biomaterials Luo 38 50 2015 10.1016/j.biomaterials.2014.10.050 Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo 

  119. The Journal of Immunology Liu 197 4 1231 2016 10.4049/jimmunol.1600182 Integrated nanovaccine with microRNA-148a inhibition reprograms tumor-associated dendritic cells by modulating miR-148a/DNMT1/SOCS1 axis 

  120. Proceedings of the National Academy of Sciences Haabeth 115 39 E9153 2018 10.1073/pnas.1810002115 mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice 

  121. Biomaterials Persano 125 81 2017 10.1016/j.biomaterials.2017.02.019 Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination 

  122. Nature Kranz 534 396 2016 10.1038/nature18300 Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy 

  123. Nano Letters Oberli 17 3 1326 2017 10.1021/acs.nanolett.6b03329 Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy 

  124. Proceedings of the National Academy of Sciences McKinlay 114 4 E448 2017 10.1073/pnas.1614193114 Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals 

  125. Nature Reviews Cancer Holohan 13 10 714 2013 10.1038/nrc3599 Cancer drug resistance: an evolving paradigm 

  126. Cancer discovery Daver 9 3 370 2019 10.1158/2159-8290.CD-18-0774 Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study 

  127. Cell reports Galletti 14 7 1748 2016 10.1016/j.celrep.2016.01.042 Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression 

  128. Blood Aurelius 119 24 5832 2012 10.1182/blood-2011-11-391722 Monocytic AML cells inactivate antileukemic lymphocytes: role of NADPH oxidase/gp91phox expression and the PARP-1/PAR pathway of apoptosis 

  129. haematologica Al-Matary 101 10 1216 2016 10.3324/haematol.2016.143180 Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner 

  130. New England Journal of Medicine Steidl 362 10 875 2010 10.1056/NEJMoa0905680 Tumor-associated macrophages and survival in classic Hodgkin's lymphoma 

  131. Nature nanotechnology Trujillo-Alonso 14 6 616 2019 10.1038/s41565-019-0406-1 FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels 

  132. Biomaterials Deng 167 80 2018 10.1016/j.biomaterials.2018.03.013 Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy 

  133. Journal of biomedical science Chau 22 1 22 2015 10.1186/s12929-015-0128-0 Heme oxygenase-1: emerging target of cancer therapy 

  134. International journal of cancer Fest 138 8 2030 2016 10.1002/ijc.29933 Targeting of heme oxygenase­1 as a novel immune regulator of neuroblastoma 

  135. Nature communications Muliaditan 9 1 2951 2018 10.1038/s41467-018-05346-7 Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis 

  136. Prabhakar 2013 Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology 

  137. Molecular Therapy - Oncolytics Newick 3 16006 2016 10.1038/mto.2016.6 Chimeric antigen receptor T-cell therapy for solid tumors 

LOADING...

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로