$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Digital Concrete: A Review 원문보기

Cement and concrete research, v.123, 2019년, pp.105780 -   

Wangler, Timothy (Institute for Building Materials, ETH Zurich) ,  Roussel, Nicolas (IFSTTAR, Laboratoire Navier, Université) ,  Bos, Freek P. (Paris Est) ,  Salet, Theo A.M. (Department of the Built Environment, Eindhoven University of Technology) ,  Flatt, Robert J. (Department of the Built Environment, Eindhoven University of Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Digital fabrication techniques with concrete and cementitious materials have seen a large amount of research and industrial activity recently, with industrialization of techniques such as 3D printing becoming more of a reality. The potential to revolutionize construction is real, not only ...

참고문헌 (169)

  1. Barbosa 

  2. Cem. Concr. Res. Flatt 112 1 2018 10.1016/j.cemconres.2018.07.007 Editorial for special issue on digital concrete 

  3. Cem. Concr. Res. Van Damme 112 5 2018 10.1016/j.cemconres.2018.05.002 Concrete material science: past, present, and future innovations 

  4. Cem. Concr. Res. Scrivener 2018 10.1016/j.cemconres.2018.03.015 Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry 

  5. J. Eur. Ceram. Soc. Flatt 32 2787 2012 10.1016/j.jeurceramsoc.2011.11.012 Concrete: an eco material that needs to be improved 

  6. Virtual Phys. Prototyp. Bos 11 209 2016 10.1080/17452759.2016.1209867 Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing 

  7. RILEM Tech. Lett. Wangler 1 67 2016 10.21809/rilemtechlett.2016.16 Digital concrete: opportunities and challenges 

  8. Cem. Concr. Res. De Schutter 112 25 2018 10.1016/j.cemconres.2018.06.001 Vision of 3D printing with concrete - technical, economic and environmental potentials 

  9. Cem. Concr. Res. Schwartz 112 122 2018 10.1016/j.cemconres.2018.06.015 Graphic statics and their potential for digital design and fabrication with concrete 

  10. Autom. Constr. Garcia de Soto 92 297 2018 10.1016/j.autcon.2018.04.004 Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall 

  11. J. Clean. Prod. Agusti-Juan 154 330 2017 10.1016/j.jclepro.2017.04.002 Potential benefits of digital fabrication for complex structures: environmental assessment of a robotically fabricated concrete wall 

  12. Autom. Constr. Buswell 16 224 2007 10.1016/j.autcon.2006.05.002 Freeform construction: mega-scale rapid manufacturing for construction 

  13. Virtual Phys. Prototyp. Tay 12 261 2017 10.1080/17452759.2017.1326724 3D printing trends in building and construction industry: a review 

  14. Cem. Concr. Compos. Shen 30 663 2008 10.1016/j.cemconcomp.2008.02.002 Functionally-graded fiber-reinforced cement composite: processing, microstructure, and properties 

  15. J. Adv. Concr. Technol. Maalej 1 307 2003 10.3151/jact.1.307 Corrosion durability and structural response of functionally-graded concrete beams 

  16. Constr. Build. Mater. Dias 24 140 2010 10.1016/j.conbuildmat.2008.01.017 Exploring the potential of functionally graded materials concept for the development of fiber cement 

  17. Adv. Mater. Res. Craveiro 2013 10.4028/www.scientific.net/AMR.683.775 Functionally graded structures through building manufacturing 

  18. Bonswetch 489 2006 Synth. Landsc. Proc. 25th Annu. Conf. Assoc. Comput.-Aided Des. Archit. The informed wall: applying additive digital fabrication techniques on architecture 

  19. Autom. Constr. Craveiro 82 75 2017 10.1016/j.autcon.2017.05.006 A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing 

  20. Oxman 2011 Innov. Dev. Virtual Phys. Prototyp. Proc. 5th Int. Conf. Adv. Res. Virtual Rapid Prototyp. Functionally graded rapid prototyping 

  21. Duballet 225 2015 Model. Behav. Des. Model. Symp. 2015 Additive manufacturing and multi-objective optimization of graded polystyrene aggregate concrete structures 

  22. Adv. Mater. Moini 30 2018 Additive manufacturing and performance of architectured cement-based materials 

  23. J. Clean. Prod. Agusti-Juan 142 2780 2017 10.1016/j.jclepro.2016.10.190 Environmental design guidelines for digital fabrication 

  24. Int. J. Life Cycle Assess. Agusti-Juan 2018 Environmental assessment of multi-functional building elements constructed with digital fabrication techniques 

  25. Autom. Constr. Khoshnevis 13 5 2004 10.1016/j.autcon.2003.08.012 Automated construction by contour crafting-related robotics and information technologies 

  26. Int. J. Ind. Syst. Eng. Khoshnevis 1 301 2006 Mega-scale fabrication by contour crafting 

  27. Salet 8 2016 Potentials and challenges in 3D concrete printing, in: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) 

  28. Mater. Des. Gosselin 100 102 2016 10.1016/j.matdes.2016.03.097 Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders 

  29. Cem. Concr. Res. Buswell 112 37 2018 10.1016/j.cemconres.2018.05.006 3D printing using concrete extrusion: a roadmap for research 

  30. Structures Duballet 2018 Space truss masonry walls with robotic mortar extrusion 

  31. Ruffray 135 2017 Proc. UHPFRC 2017, Association Francaise de Genie Civil (AFGC) Complex architectural elements from UHPFRC and 3D printed sandstone 

  32. N. Hack, T. Wangler, J. Mata-Falcon, K. Dorfler, N. Kumar, N. Walzer, K. Graser, L. Reiter, H. Richner, J. Buchli, W. Kaufmann, R.J. Flatt, F. Gramazio, M. Kohler, Mesh mould: an on site, robotically fabricated, functional formwork, in: HPCCIC Tromsø 2017, Norwegian Concrete Association, Tromso, Norway, n.d.: p. 11. 

  33. de Laubier 2018 Will 3D Printing Remodel the Construction Industry? 

  34. Bechtel using wax and 3D printing to build London tube, Constr. Equip.. (n.d.). https://www.constructionequipment.com/bechtel-using-wax-and-3d-printing-build-london-tube (accessed February 24, 2019). 

  35. Schipper 2015 Double-Curved Precast Concrete Elements 

  36. Structures Popescu 14 322 2018 10.1016/j.istruc.2018.03.001 Building in concrete with an ultra-lightweight knitted stay-in-place formwork: prototype of a concrete shell bridge 

  37. Comput. Aided Des. Lloret 60 40 2015 10.1016/j.cad.2014.02.011 Complex concrete structures: merging existing casting techniques with digital fabrication 

  38. Lloret Fritschi 2017 HPCCIC Tromsø 2017 Smart dynamic casting: slipforming with flexible formwork - inline measurement and control 

  39. Szabo 81 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Adapting smart dynamic casting to thin folded geometries 

  40. Yu 421 2019 Robot. Fabr. Archit. Art Des. 2018 Dynamic robotic slip-form casting and eco-friendly building facade design 

  41. Acta Astronaut. Cesaretti 93 430 2014 10.1016/j.actaastro.2013.07.034 Building components for an outpost on the lunar soil by means of a novel 3D printing technology 

  42. Cem. Concr. Res. Lowke 112 50 2018 10.1016/j.cemconres.2018.05.018 Particle-bed 3D printing in concrete construction - possibilities and challenges 

  43. Mater. Struct. Pierre 51 2018 10.1617/s11527-018-1148-5 Penetration of cement pastes into sand packings during 3D printing: analytical and experimental study 

  44. Mater. Des. Xia 110 382 2016 10.1016/j.matdes.2016.07.136 Method of formulating geopolymer for 3D printing for construction applications 

  45. Xia 245 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Compressive strength and dimensional accuracy of Portland cement mortar made using powder-based 3D printing for construction applications 

  46. Cem. Concr. Res. Buchli 112 66 2018 10.1016/j.cemconres.2018.05.013 Digital in situ fabrication - challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond 

  47. Mater. Struct. Roussel 40 1001 2007 10.1617/s11527-007-9313-2 Rheology of fresh concrete: from measurements to predictions of casting processes 

  48. Cem. Concr. Res. Roussel 112 76 2018 10.1016/j.cemconres.2018.04.005 Rheological requirements for printable concretes 

  49. Billberg 

  50. RILEM Tech. Lett. Schutter 1 76 2016 10.21809/rilemtechlett.2016.15 Pumping of fresh concrete: insights and challenges 

  51. ACI Mater. J. Farmington Hills Kaplan 102 110 2005 Design of concrete pumping circuit 

  52. Cem. Concr. Res. Jacobsen 39 997 2009 10.1016/j.cemconres.2009.07.005 Flow conditions of fresh mortar and concrete in different pipes 

  53. Vassiliev 1953 Flow Regime in a Concrete Pipe 

  54. Feys 66 2009 Natl. Congr. Theor. Appl. Mech. 8th Proc. Pipe flow velocity profiles of complex suspensions, like concrete 

  55. Phys. Fluids Fluid Dyn. Phillips 4 30 1992 10.1063/1.858498 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration 

  56. Int. J. Multiph. Flow. Ingber 35 270 2009 10.1016/j.ijmultiphaseflow.2008.11.003 An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius 

  57. Cem. Concr. Compos. Lu 30 1 2008 10.1016/j.cemconcomp.2007.06.002 Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics 

  58. J. Rheol. Abbott 35 773 1991 10.1122/1.550157 Experimental observations of particle migration in concentrated suspensions: Couette flow 

  59. Tattersall 

  60. Cem. Concr. Res. Choi 45 69 2013 10.1016/j.cemconres.2012.11.001 Lubrication layer properties during concrete pumping 

  61. Cem. Concr. Res. Yuan 99 183 2017 10.1016/j.cemconres.2017.05.014 On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test 

  62. Mater. J. Omran 108 628 2011 Portable vane test to assess structural buildup at rest of self-consolidating concrete 

  63. Cem. Concr. Res. Roussel 36 1797 2006 10.1016/j.cemconres.2006.05.025 A thixotropy model for fresh fluid concretes: theory, validation and applications 

  64. RILEM Tech. Lett. Perrot 3 91 2018 10.21809/rilemtechlett.2018.75 Extrusion of cement-based materials - an overview 

  65. Cem. Concr. Res. Wolfs 106 103 2018 10.1016/j.cemconres.2018.02.001 Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing 

  66. J. Rheol. 1978-Present. Roussel 49 705 2005 “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow 

  67. Cem. Concr. Res. Schultz 23 273 1993 10.1016/0008-8846(93)90092-N Use of oscillatory shear to study flow behavior of fresh cement paste 

  68. Cem. Concr. Res. Roussel 42 148 2012 10.1016/j.cemconres.2011.09.004 The origins of thixotropy of fresh cement pastes 

  69. Constr. Build. Mater. Wolfs 181 447 2018 10.1016/j.conbuildmat.2018.06.060 Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete 

  70. Cem. Concr. Res. Lootens 39 401 2009 10.1016/j.cemconres.2009.01.012 Yield stress during setting of cement pastes from penetration tests 

  71. Mater. Struct. Perrot 49 1213 2016 10.1617/s11527-015-0571-0 Structural built-up of cement-based materials used for 3D-printing extrusion techniques 

  72. Cem. Concr. Res. Reiter 112 86 2018 10.1016/j.cemconres.2018.05.011 The role of early age structural build-up in digital fabrication with concrete 

  73. Cem. Concr. Res. Mettler 89 288 2016 10.1016/j.cemconres.2016.09.004 Evolution of strength and failure of SCC during early hydration 

  74. Cem. Concr. Res. Roussel 35 1656 2005 10.1016/j.cemconres.2004.08.001 Steady and transient flow behaviour of fresh cement pastes 

  75. RILEM Tech. Lett. Feys 2 129 2017 10.21809/rilemtechlett.2017.43 Measuring rheological properties of cement pastes: most common techniques, procedures and challenges 

  76. Cem. Concr. Res. Roussel 38 624 2008 10.1016/j.cemconres.2007.09.023 Distinct-layer casting of SCC: the mechanical consequences of thixotropy 

  77. Cem. Concr. Res. Nachbaur 31 183 2001 10.1016/S0008-8846(00)00464-6 Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting 

  78. Nerella 2018 Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing 

  79. E. Keita, H. Bessaies-Bey, W. Zuo, P. Belin, N. Roussel, Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin., Cem. Concr. Res. (submitted). 

  80. Cem. Concr. Res. Marchon 112 96 2018 10.1016/j.cemconres.2018.05.014 Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry 

  81. Cem. Concr. Res. Brumaud 55 14 2014 10.1016/j.cemconres.2013.06.013 Cellulose ethers and yield stress of cement pastes 

  82. Cem. Concr. Res. Bessaies-Bey 76 98 2015 10.1016/j.cemconres.2015.05.012 Effect of polyacrylamide on rheology of fresh cement pastes 

  83. Cem. Concr. Res. Kawashima 53 112 2013 10.1016/j.cemconres.2013.05.019 Rate of thixotropic rebuilding of cement pastes modified with highly purified attapulgite clays 

  84. Aitcin 405 2016 Sci. Technol. Concr. Admix 19 - accelerators 

  85. Bos 2019 Proc. Seventh Int. Conf. Struct. Eng. Mech. Comput. SEMC The influence of material temperature on the in-print strength and stability of a 3D print mortar 

  86. Spec. Publ. Reiter 302 2015 Putting concrete to sleep and waking it up with chemical admixtures 

  87. J. Phys. Chem. C Thomas 113 4327 2009 10.1021/jp809811w Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement 

  88. Cem. Concr. Res. Cheung 41 1289 2011 10.1016/j.cemconres.2011.03.005 Impact of admixtures on the hydration kinetics of Portland cement 

  89. Cem. Concr. Res. Nicoleau 59 118 2014 10.1016/j.cemconres.2014.02.006 Ion-specific effects influencing the dissolution of tricalcium silicate 

  90. Myrdal 2007 State of the Art, SINTEF Building and Infrastructure Accelerating admixtures for concrete 

  91. Cem. Concr. Compos. Prudencio 20 213 1998 10.1016/S0958-9465(98)80007-3 Accelerating admixtures for shotcrete 

  92. Cem. Concr. Res. Paglia 31 913 2001 10.1016/S0008-8846(01)00509-9 The influence of alkali-free and alkaline shotcrete accelerators within cement systems: I. Characterization of the setting behavior 

  93. Mater. Struct. Le 45 1221 2012 10.1617/s11527-012-9828-z Mix design and fresh properties for high-performance printing concrete 

  94. Cem. Concr. Res. Wolfs 119 132 2019 10.1016/j.cemconres.2019.02.017 Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion 

  95. Bissonnette 2011 Bonded Cement-Based Material Overlays for the Repair, the Lining or the Strengthening of Slabs or Pavements: State-of-the-Art Report of the RILEM Technical Committee 193-RLS 

  96. 318-08: Building Code Requirements for Structural Concrete and Commentary, (n.d.). 

  97. EN 1991-1, Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, (n.d.). 

  98. Rev. Eur. Genie Civ. Coussot 10 45 2006 Quantification de la thixotropie des materiaux cimentaires et de ses effet 

  99. Mater. J. Megid 114 467 2017 Bond strength in multilayer casting of self-consolidating concrete 

  100. J. Mater. Civ. Eng. Assaad 28 2016 10.1061/(ASCE)MT.1943-5533.0001624 Correlating thixotropy of self-consolidating concrete to stability, formwork pressure, and multilayer casting 

  101. Constr. Build. Mater. Feng 93 486 2015 10.1016/j.conbuildmat.2015.05.132 Mechanical properties of structures 3D printed with cementitious powders 

  102. Measurement Panda 113 108 2018 10.1016/j.measurement.2017.08.051 Measurement of tensile bond strength of 3D printed geopolymer mortar 

  103. Van Der Putten 234 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 The effect of print parameters on the (micro)structure of 3D printed cementitious materials 

  104. Panda 200 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Bond strength in 3D printed geopolymer mortar 

  105. Materials Kim 10 1349 2017 10.3390/ma10121349 Evaluation of shear strength of RC beams with multiple interfaces formed before initial setting using 3D printing technology 

  106. Marchment 1 2017 ISARC Proc. Int. Symp. Autom. Robot. Constr. Waterloo Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete 

  107. Marchment 148 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Method of enhancing interlayer bond strength in 3D concrete printing 

  108. Mater. Des. Marchment 169 2019 10.1016/j.matdes.2019.107684 Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification 

  109. Kho P Verian, M.D. Carli, R.P. Bright, E. Maandi, Research Development in 3DCP: Cured-on-Demand With Adhesion Enhancement Delivery System, Unpublished. (2018). doi:10.13140/rg.2.2.26245.60641. 

  110. Autom. Constr. Zareiyan 83 212 2017 10.1016/j.autcon.2017.08.019 Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete 

  111. Cem. Concr. Res. Asprone 112 111 2018 10.1016/j.cemconres.2018.05.020 Rethinking reinforcement for digital fabrication with concrete 

  112. Autom. Constr. Wu 68 21 2016 10.1016/j.autcon.2016.04.005 A critical review of the use of 3-D printing in the construction industry 

  113. Gaudilliere 459 2019 Robot. Fabr. Archit. Art Des. 2018 Large-scale additive manufacturing of ultra-high-performance concrete of integrated formwork for truss-shaped pillars 

  114. Jipa 345 2017 Blucher Des. Proc skelETHon formwork 3D printed plastic formwork for load-bearing concrete structures 

  115. Lloret-Fritschi 299 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Challenges of real-scale production with smart dynamic casting 

  116. Archit. Des. Hack 84 44 2014 Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork 

  117. Hack 347 2015 FERRO-11 Proc. 11th Int. Symp. Ferrocem. 3rd ICTRC Int. Conf. Text. Reinf. Concr., RILEM Publications SARL Mesh mould: robotically fabricated metal meshes as concrete formwork and reinforcement 

  118. Pfandler 207 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Potentials of steel fibres for mesh mould elements 

  119. Constr. Build. Mater. Asprone 165 218 2018 10.1016/j.conbuildmat.2018.01.018 3D printing of reinforced concrete elements: technology and design approach 

  120. Eng. Struct. Liew 137 323 2017 10.1016/j.engstruct.2017.01.075 Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor 

  121. Autom. Constr. Borg Costanzi 94 395 2018 10.1016/j.autcon.2018.06.013 3D printing concrete on temporary surfaces: the design and fabrication of a concrete shell structure 

  122. Autom. Constr. Lim 21 262 2012 10.1016/j.autcon.2011.06.010 Developments in construction-scale additive manufacturing processes 

  123. Virtual Phys. Prototyp. Salet 13 222 2018 10.1080/17452759.2018.1476064 Design of a 3D printed concrete bridge by testing 

  124. Vantyghem 323 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Compliance, stress-based and multi-physics topology optimization for 3D-printed concrete structures 

  125. Materials Bos 10 1314 2017 10.3390/ma10111314 Experimental exploration of metal cable as reinforcement in 3D printed concrete 

  126. Bos 2484 2018 High Tech Concr. Technol. Eng. Meet 3D printing concrete with reinforcement 

  127. Mater. Lett. Ma 235 144 2019 10.1016/j.matlet.2018.09.159 Micro-cable reinforced geopolymer composite for extrusion-based 3D printing 

  128. Constr. Build. Mater. Lim 178 32 2018 10.1016/j.conbuildmat.2018.05.010 Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement 

  129. Struct. Concr. Hegger 19 637 2018 10.1002/suco.201700157 Innovative design concepts: application of textile reinforced concrete to shell structures 

  130. Constr. Build. Mater. Mechtcherine 179 125 2018 10.1016/j.conbuildmat.2018.05.202 3D-printed steel reinforcement for digital concrete construction - manufacture, mechanical properties and bond behaviour 

  131. Cem. Concr. Compos. Hambach 79 62 2017 10.1016/j.cemconcomp.2017.02.001 Properties of 3D-printed fiber-reinforced Portland cement paste 

  132. Mater. Lett. Panda 209 146 2017 10.1016/j.matlet.2017.07.123 Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material 

  133. Materials Nematollahi 11 2352 2018 10.3390/ma11122352 Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction 

  134. Weng 2018 3D Printable High Performance Fiber Reinforced Cementitious Composites for Large-Scale Printing 

  135. Rapid Prototyp. J. Zareiyan 24 584 2018 10.1108/RPJ-02-2017-0029 Effects of mixture ingredients on interlayer adhesion of concrete in contour crafting 

  136. Virtual Phys. Prototyp. Bos 14 160 2019 10.1080/17452759.2018.1548069 Ductility of 3D printed concrete reinforced with short straight steel fibers 

  137. J. Adv. Concr. Technol. Li 1 215 2003 10.3151/jact.1.215 On engineered cementitious composites (ECC) 

  138. Cem. Concr. Res. Muller 92 75 2017 10.1016/j.cemconres.2016.11.003 Fatigue behaviour of strain-hardening cement-based composites (SHCC) 

  139. Eng. Fract. Mech. Li 65 317 2000 10.1016/S0013-7944(99)00117-4 Repair and retrofit with engineered cementitious composites 

  140. Cem. Concr. Compos. Soltan 90 1 2018 10.1016/j.cemconcomp.2018.03.017 A self-reinforced cementitious composite for building-scale 3D printing 

  141. Bao 115 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Three-dimensional printing multifunctional engineered cementitious composites (ECC) for structural elements 

  142. Yu 255 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Impact of 3D printing direction on mechanical performance of strain-hardening cementitious composite (SHCC) 

  143. Materials Ogura 11 1375 2018 10.3390/ma11081375 Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D-printing 

  144. Mater. Des. Chaves Figueiredo 169 2019 10.1016/j.matdes.2019.107651 An approach to develop printable strain hardening cementitious composites 

  145. Stefanoni 225 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Corrosion challenges and opportunities in digital fabrication of reinforced concrete 

  146. Schrofl 217 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Capillary water intake by 3D-printed concrete visualised and quantified by neutron radiography 

  147. Bran Anleu 

  148. Bos 129 2019 First RILEM Int. Conf. Concr. Digit. Fabr. - Digit. Concr. 2018 Large scale testing of digitally fabricated concrete (DFC) elements 

  149. Gramazio 2008 Digital Materiality in Architecture 

  150. 2016 How Thomas Edison Tried and Failed to Make Single-Pour Concrete Homes 

  151. Edison 

  152. Lloret Fritschi 2016 Smart Dynamic Casting - A Digital Fabrication Method for Non-standard Concrete Structures 

  153. Hamada vol.3 2428 1998 Proc. 1998 IEEE Int. Conf. Robot. Autom. Cat No98CH36146 Development of automated construction system for high-rise reinforced concrete buildings 

  154. Autom. Constr. Pegna 5 427 1997 10.1016/S0926-5805(96)00166-5 Exploratory investigation of solid freeform construction 

  155. Hwang 2004 ISARC Proc. 2004 Proceedings of the 21st ISARC, Jeju, South Korea Concrete wall fabrication by contour crafting 

  156. Addit. Manuf. Krassenstein 2014 World's first 3D printed castle is complete - Andrey Rudenko now to print a full-size house 

  157. Addit. Manuf. Scott 2016 Chinese construction company 3D prints an entire two-story house on-stie in 45 days 

  158. Addit. Manuf. Saunders 2018 Robotic 3d printed YHNOVA house officially inaugurated, tenants to move in soon 

  159. 2018 U.S. Marines Use 3D Printing to Rapidly Construct Concrete Barrack 

  160. 3D Printed Manholes|A solution to labor intesive manholes, CyBe Constr. (n.d.). https://cybe.eu/portfolio-item/3d-printed-manholes/ (accessed March 12, 2019). 

  161. Gaudilliere 37 2019 3D Concr. Print. Technol Chapter 3 - building applications using lost formworks obtained through large-scale additive manufacturing of ultra-high-performance concrete 

  162. Grunberg 191 2013 Concr. Struct. Wind Turbines Construction of prestressed concrete towers 

  163. Autom. Constr. Duballet 83 247 2017 10.1016/j.autcon.2017.08.018 Classification of building systems for concrete 3D printing 

  164. Lim 2011 Development of a Viable Concrete Printing Process 

  165. 2017 World's First 3D Printed Bridge Opens in Spain 

  166. Salet 2018 3D Printed Concrete Bridge 

  167. Aghaei Meibodi 320 2018 ReCalibration Imprecision Infidelity Smart slab: computational design and digital fabrication of a lightweight concrete slab 

  168. Energy Build Ramesh 42 1592 2010 10.1016/j.enbuild.2010.05.007 Life cycle energy analysis of buildings: an overview 

  169. CTBUH J. Schlueter 40 2016 3for2: realizing spatial, material, and energy savings through integrated design 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로