$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Protons Make Possible Heterolytic Activation of Hydrogen Peroxide over Zr-Based Metal-Organic Frameworks

ACS catalysis, v.9 no.11, 2019년, pp.9699 - 9704  

Maksimchuk, Nataliya V. (Boreskov Institute of Catalysis , Pr. Lavrentieva 5 , Novosibirsk 630090 , Russia) ,  Lee, Ji Sun (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , P.O. Box 107, Yuseong, Daejeon 305-600 , Korea) ,  Solovyeva, Marina V. (Boreskov Institute of Catalysis , Pr. Lavrentieva 5 , Novosibirsk 630090 , Russia) ,  Cho, Kyung Ho (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , P.O. Box 107, Yuseong, Daejeon 305-600 , Korea) ,  Shmakov, Aleksandr N. (Boreskov Institute of Catalysis , Pr. Lavrentieva 5 , Novosibirsk 630090 , Russia) ,  Chesalov, Yuriy A. (Boreskov Institute of Catalysis , Pr. Lavrentieva 5 , Novosibirsk 630090 , Russia) ,  Chang, Jong-San (Research Center for Nanocatalysts , Korea Research Institute of Chemical Technology , P.O. Box 107, Yuseong, Daejeon 305-600 , Korea) ,  Kholdeeva, Oxana A.

Abstract AI-Helper 아이콘AI-Helper

The catalytic performance of zirconium-based metal-organic frameworks (UiO-66, UiO-67, and MOF-801) in cyclohexene oxidation with aqueous hydrogen peroxide can be greatly improved by adding a source of protons directly into the reaction mixture. A blend of Zr-MOF and protons favors heterolytic activ...

주제어

참고문헌 (62)

  1. Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications Clerici M. G. 2013 10.1002/9781118356760 

  2. Handbook of Advanced Methods and Processes in Oxidation Catalysis Duprez D. 2014 10.1142/p791 

  3. Application of Hydrogen Peroxide and Derivatives Jones C. W. 1999 10.1039/9781847550132 

  4. Campos-Martin, Jose M., Blanco-Brieva, Gema, Fierro, Jose L. G.. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angewandte Chemie. international edition, vol.45, no.42, 6962-6984.

  5. Edwards, J.K., Freakley, S.J., Lewis, R.J., Pritchard, J.C., Hutchings, G.J.. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis today, vol.248, 3-9.

  6. Menegazzo, Federica, Signoretto, Michela, Ghedini, Elena, Strukul, Giorgio. Looking for the “Dream Catalyst” for Hydrogen Peroxide Production from Hydrogen and Oxygen. Catalysts, vol.9, no.3, 251-.

  7. Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis Schröder M. 2010 10.1007/978-3-642-14613-8 

  8. Metal-Organic Frameworks: Applications in Separations and Catalysis García H. 2018 10.1002/9783527809097 

  9. Elaboration and Applications of Metal-Organic Frameworks Ma S. 2018 10.1142/10616 

  10. Kholdeeva, O.A.. Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catalysis today, vol.278, no.1, 22-29.

  11. Kramer, Søren, Bennedsen, Niklas R., Kegnæs, Søren. Porous Organic Polymers Containing Active Metal Centers as Catalysts for Synthetic Organic Chemistry. ACS catalysis, vol.8, no.8, 6961-6982.

  12. Dhakshinamoorthy, Amarajothi, Asiri, Abdullah M., Alvaro, Mercedes, Garcia, Hermenegildo. Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green chemistry : an international journal and green chemistry resource : GC, vol.20, no.1, 86-107.

  13. Yang, Dong, Gates, Bruce C.. Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS catalysis, vol.9, no.3, 1779-1798.

  14. Bai, Yan, Dou, Yibo, Xie, Lin-Hua, Rutledge, William, Li, Jian-Rong, Zhou, Hong-Cai. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society reviews, vol.45, no.8, 2327-2367.

  15. Howarth, Ashlee J., Liu, Yangyang, Li, Peng, Li, Zhanyong, Wang, Timothy C., Hupp, Joseph T., Farha, Omar K.. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature reviews. Materials, vol.1, no.3, 15018-.

  16. Cavka, Jasmina Hafizovic, Jakobsen, Søren, Olsbye, Unni, Guillou, Nathalie, Lamberti, Carlo, Bordiga, Silvia, Lillerud, Karl Petter. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, vol.130, no.42, 13850-13851.

  17. Devic, Thomas, Serre, Christian. High valence 3p and transition metal based MOFs. Chemical Society reviews, vol.43, no.16, 6097-6115.

  18. Leus, K., Bogaerts, T., De Decker, J., Depauw, H., Hendrickx, K., Vrielinck, H., Van Speybroeck, V., Van Der Voort, P.. Systematic study of the chemical and hydrothermal stability of selected ''stable'' Metal Organic Frameworks. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.226, 110-116.

  19. Vermoortele, Frederik, Bueken, Bart, Le Bars, Gaëlle, Van de Voorde, Ben, Vandichel, Matthias, Houthoofd, Kristof, Vimont, Alexandre, Daturi, Marco, Waroquier, Michel, Van Speybroeck, Veronique, Kirschhock, Christine, De Vos, Dirk E.. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, vol.135, no.31, 11465-11468.

  20. Caratelli, Chiara, Hajek, Julianna, Cirujano, Francisco G., Waroquier, Michel, Llabrés i Xamena, Francesc X., Van Speybroeck, Veronique. Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. Journal of catalysis, vol.352, 401-414.

  21. Taddei, M.. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination chemistry reviews, vol.343, 1-24.

  22. Shearer, Greig C., Chavan, Sachin, Ethiraj, Jayashree, Vitillo, Jenny G., Svelle, Stian, Olsbye, Unni, Lamberti, Carlo, Bordiga, Silvia, Lillerud, Karl Petter. Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of materials : a publication of the American Chemical Society, vol.26, no.14, 4068-4071.

  23. DeStefano, Matthew R., Islamoglu, Timur, Garibay, Sergio J., Hupp, Joseph T., Farha, Omar K.. Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of materials : a publication of the American Chemical Society, vol.29, no.3, 1357-1361.

  24. Xiao, Weiming, Dong, Qiaoling, Wang, Yao, Li, Yuan, Deng, Shengjun, Zhang, Ning. Time modulation of defects in UiO-66 and application in oxidative desulfurization. CrystEngComm, vol.20, no.38, 5658-5662.

  25. Wu, Hui, Chua, Yong Shen, Krungleviciute, Vaiva, Tyagi, Madhusudan, Chen, Ping, Yildirim, Taner, Zhou, Wei. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society, vol.135, no.28, 10525-10532.

  26. Shearer, Greig C., Chavan, Sachin, Bordiga, Silvia, Svelle, Stian, Olsbye, Unni, Lillerud, Karl Petter. Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.11, 3749-3761.

  27. Dissegna, Stefano, Vervoorts, Pia, Hobday, Claire L., Düren, Tina, Daisenberger, Dominik, Smith, Andrew J., Fischer, Roland A., Kieslich, Gregor. Tuning the Mechanical Response of Metal-Organic Frameworks by Defect Engineering. Journal of the American Chemical Society, vol.140, no.37, 11581-11584.

  28. Park, Hyojin, Kim, Seongwoo, Jung, Byunghyuck, Park, Myung Hwan, Kim, Youngjo, Kim, Min. Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorganic chemistry, vol.57, no.3, 1040-1047.

  29. Ye, Gan, Zhang, Dan, Li, Xiangfu, Leng, Kunyue, Zhang, Wenjuan, Ma, Jun, Sun, Yinyong, Xu, Wei, Ma, Shengqian. Boosting Catalytic Performance of Metal–Organic Framework by Increasing the Defects via a Facile and Green Approach. ACS applied materials & interfaces, vol.9, no.40, 34937-34943.

  30. Limvorapitux, Rungmai, Chen, Haoyuan, Mendonca, Matthew L., Liu, Mengtan, Snurr, Randall Q., Nguyen, SonBinh T.. Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent. Catalysis science & technology, vol.9, no.2, 327-335.

  31. Fei, Honghan, Shin, JaeWook, Meng, Ying Shirley, Adelhardt, Mario, Sutter, Jörg, Meyer, Karsten, Cohen, Seth M.. Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework. Journal of the American Chemical Society, vol.136, no.13, 4965-4973.

  32. Nguyen, Huong Giang T., Schweitzer, Neil M., Chang, Chih-Yi, Drake, Tasha L., So, Monica C., Stair, Peter C., Farha, Omar K., Hupp, Joseph T., Nguyen, SonBinh T.. Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS catalysis, vol.4, no.8, 2496-2500.

  33. Nguyen, Huong Giang T., Mao, Lily, Peters, Aaron W., Audu, Cornelius O., Brown, Zachary J., Farha, Omar K., Hupp, Joseph T., Nguyen, SonBinh T.. Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide. Catalysis science & technology, vol.5, no.9, 4444-4451.

  34. Noh, Hyunho, Cui, Yuexing, Peters, Aaron W., Pahls, Dale R., Ortuño, Manuel A., Vermeulen, Nicolaas A., Cramer, Christopher J., Gagliardi, Laura, Hupp, Joseph T., Farha, Omar K.. An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. Journal of the American Chemical Society, vol.138, no.44, 14720-14726.

  35. Leus, K., Concepcion, P., Vandichel, M., Meledina, M., Grirrane, A., Esquivel, D., Turner, S., Poelman, D., Waroquier, M., Van Speybroeck, V., Van Tendeloo, G., García, H., Van Der Voort, P.. Au@UiO-66: a base free oxidation catalyst. RSC advances, vol.5, no.29, 22334-22342.

  36. Wang, J. C., Hu, Y. H., Chen, G. J., Dong, Y. B.. Cu(II)/Cu(0)@UiO-66-NH2: base metal@MOFs as heterogeneous catalysts for olefin oxidation and reduction. Chemical communications : Chem comm, vol.52, no.89, 13116-13119.

  37. Limvorapitux, Rungmai, Chou, Lien-Yang, Young, Allison P., Tsung, Chia-Kuang, Nguyen, SonBinh T.. Coupling Molecular and Nanoparticle Catalysts on Single Metal–Organic Framework Microcrystals for the Tandem Reaction of H2O2 Generation and Selective Alkene Oxidation. ACS catalysis, vol.7, no.10, 6691-6698.

  38. Tan, Chunxia, Han, Xing, Li, Zijian, Liu, Yan, Cui, Yong. Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal-Organic Framework. Journal of the American Chemical Society, vol.140, no.47, 16229-16236.

  39. Ragon, Florence, Horcajada, Patricia, Chevreau, Hubert, Hwang, Young Kyu, Lee, U-Hwang, Miller, Stuart R., Devic, Thomas, Chang, Jong-San, Serre, Christian. In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorganic chemistry, vol.53, no.5, 2491-2500.

  40. Gutov, Oleksii V., Hevia, Miguel González, Escudero-Adán, Eduardo C., Shafir, Alexandr. Metal–Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks. Inorganic chemistry, vol.54, no.17, 8396-8400.

  41. Furukawa, Hiroyasu, Gándara, Felipe, Zhang, Yue-Biao, Jiang, Juncong, Queen, Wendy L., Hudson, Matthew R., Yaghi, Omar M.. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, vol.136, no.11, 4369-4381.

  42. Valenzano, Loredana, Civalleri, Bartolomeo, Chavan, Sachin, Bordiga, Silvia, Nilsen, Merete H., Jakobsen, Søren, Lillerud, Karl Petter, Lamberti, Carlo. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of materials : a publication of the American Chemical Society, vol.23, no.7, 1700-1718.

  43. Maksimchuk, Nataliya V., Maksimov, Gennadii M., Evtushok, Vasilii Yu., Ivanchikova, Irina D., Chesalov, Yuriy A., Maksimovskaya, Raisa I., Kholdeeva, Oxana A., Solé-Daura, Albert, Poblet, Josep M., Carbó, Jorge J.. Relevance of Protons in Heterolytic Activation of H2O2 over Nb(V): Insights from Model Studies on Nb-Substituted Polyoxometalates. ACS catalysis, vol.8, no.10, 9722-9737.

  44. Metal-Catalyzed Oxidations of Organic Compounds Sheldon R. A. 1981 

  45. Maksimchuk, Nataliya V., Kovalenko, Konstantin A., Arzumanov, Sergey S., Chesalov, Yurii A., Melgunov, Maxim S., Stepanov, Alexander G., Fedin, Vladimir P., Kholdeeva, Oxana A.. Hybrid Polyoxotungstate/MIL-101 Materials: Synthesis, Characterization, and Catalysis of H2O2-Based Alkene Epoxidation. Inorganic chemistry, vol.49, no.6, 2920-2930.

  46. Morandin, Marco, Gavagnin, Roberta, Pinna, Francesco, Strukul, Giorgio. Oxidation of Cyclohexene with Hydrogen Peroxide Using Zirconia–Silica Mixed Oxides: Control of the Surface Hydrophilicity and Influence on the Activity of the Catalyst and Hydrogen Peroxide Efficiency. Journal of catalysis, vol.212, no.2, 193-200.

  47. Kholdeeva, Oxana A., Maksimovskaya, Raisa I.. Titanium- and zirconium-monosubstituted polyoxometalates as molecular models for studying mechanisms of oxidation catalysis. Journal of molecular catalysis. A, Chemical, vol.262, no.1, 7-24.

  48. Burch, R., Ellis, P.R.. An investigation of alternative catalytic approaches for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Applied catalysis. B, Environmental, vol.42, no.2, 203-211.

  49. Choudhary, Vasant R., Samanta, Chanchal. Role of chloride or bromide anions and protons for promoting the selective oxidation of H2 by O2 to H2O2 over supported Pd catalysts in an aqueous medium. Journal of catalysis, vol.238, no.1, 28-38.

  50. Edwards, Jennifer K., Solsona, Benjamin, N, Edwin Ntainjua, Carley, Albert F., Herzing, Andrew A., Kiely, Christopher J., Hutchings, Graham J.. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, vol.323, no.5917, 1037-1041.

  51. Choudhary, V.R., Sansare, S.D., Gaikwad, A.G.. Direct Oxidation of H2 to H2O2 and Decomposition of H2O2 Over Oxidized and Reduced Pd-Containing Zeolite Catalysts in Acidic Medium. Catalysis letters, vol.84, no.1, 81-87.

  52. Kholdeeva, O. A., Maksimov, G. M., Maksimovskaya, R. I., Vanina, M. P., Trubitsina, T. A., Naumov, D. Y., Kolesov, B. A., Antonova, N. S., Carbo, J. J., Poblet, J. M.. ZrIV-Monosubstituted Keggin-Type Dimeric Polyoxometalates: Synthesis, Characterization, Catalysis of H2O2-Based Oxidations, and Theoretical Study. Inorganic chemistry, vol.45, no.18, 7224-7234.

  53. Jiménez-Lozano, Pablo, Ivanchikova, Irina D., Kholdeeva, Oxana A., Poblet, Josep M., Carbó, Jorge J.. Alkene oxidation by Ti-containing polyoxometalates. Unambiguous characterization of the role of the protonation state. Chemical communications : Chem comm, vol.48, no.74, 9266-9268.

  54. Torbina, Viktoriia V., Nedoseykina, Nadezhda S., Ivanchikova, Irina D., Kholdeeva, Oxana A., Vodyankina, Olga V.. Propylene glycol oxidation with hydrogen peroxide over Zr-containing metal-organic framework UiO-66. Catalysis today, vol.333, 47-53.

  55. Kholdeeva, Oxana A., Trubitsina, Tatiana A., Timofeeva, Maria N., Maksimov, Gennadii M., Maksimovskaya, Raisa I., Rogov, Vladimir A.. The role of protons in cyclohexene oxidation with H2O2 catalysed by Ti(IV)-monosubstituted Keggin polyoxometalate. Journal of molecular catalysis. A, Chemical, vol.232, no.1, 173-178.

  56. Kholdeeva, Oxana A.. Hydrogen Peroxide Activation over TiIV: What Have We Learned from Studies on Ti‐Containing Polyoxometalates?. European journal of inorganic chemistry, vol.2013, no.10, 1595-1605.

  57. Antonova, Nadya S., Carbó, Jorge J., Kortz, Ulrich, Kholdeeva, Oxana A., Poblet, Josep M.. Mechanistic Insights into Alkene Epoxidation with H2O2 by Ti- and other TM-Containing Polyoxometalates: Role of the Metal Nature and Coordination Environment. Journal of the American Chemical Society, vol.132, no.21, 7488-7497.

  58. Maksimchuk, Nataliya V., Ivanchikova, Irina D., Maksimov, Gennadii M., Eltsov, Ilia V., Evtushok, Vasilii Yu., Kholdeeva, Oxana A., Lebbie, Daniel, Errington, R. John, Solé-Daura, Albert, Poblet, Josep M., Carbó, Jorge J.. Why Does Nb(V) Show Higher Heterolytic Pathway Selectivity Than Ti(IV) in Epoxidation with H2O2? Answers from Model Studies on Nb- and Ti-Substituted Lindqvist Tungstates. ACS catalysis, vol.9, no.7, 6262-6275.

  59. Klet, Rachel C., Liu, Yangyang, Wang, Timothy C., Hupp, Joseph T., Farha, Omar K.. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.4, 1479-1485.

  60. Nakagawa, Y., Mizuno, N.. Mechanism of [&ggr;-H2SiV2W10O40]4--Catalyzed Epoxidation of Alkenes with Hydrogen Peroxide. Inorganic chemistry, vol.46, no.5, 1727-1736.

  61. Bassil, Bassem S., Mal, Sib Sankar, Dickman, Michael H., Kortz, Ulrich, Oelrich, Holger, Walder, Lorenz. 6-Peroxo-6-Zirconium Crown and Its Hafnium Analogue Embedded in a Triangular Polyanion: [M6(O2)6(OH)6(γ-SiW10O36)3]18− (M = Zr, Hf). Journal of the American Chemical Society, vol.130, no.21, 6696-6697.

  62. Mal, Sib Sankar, Nsouli, Nadeen H., Carraro, Mauro, Sartorel, Andrea, Scorrano, Gianfranco, Oelrich, Holger, Walder, Lorenz, Bonchio, Marcella, Kortz, Ulrich. Peroxo-Zr/Hf-Containing Undecatungstosilicates and -Germanates. Inorganic chemistry, vol.49, no.1, 7-9.

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로