$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Fluorite-type Tm3+:KY3F10: A promising crystal for watt-level lasers at ∼1.9 μm

Journal of alloys and compounds, v.813, 2020년, pp.152176 -   

Chen, Mengting (Department of Optoelectronic Engineering, Jinan University) ,  Loiko, Pavel (ITMO University) ,  Serres, Josep Maria (Universitat Rovira i Virgili, Departament Quí) ,  Veronesi, Stefano (mica Fí) ,  Tonelli, Mauro (sica i Inorgà) ,  Aguiló, Magdalena (nica, Fí) ,  Díaz, Francesc (sica i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS) ,  Choi, Sun Yung (NEST Istituto Nanoscienze-CNR and Dipartimento di Fisica dell’Università) ,  Bae, Ji Eun (di Pisa) ,  Rotermund, Fabian (NEST Istituto Nanoscienze-CNR and Dipartimento di Fisica dell’Università) ,  Dai, Shibo (di Pisa) ,  Chen, Zhenqiang (Universitat Rovira i Virgili, Departament Quí) ,  Griebner, Uwe (mica Fí) ,  Petrov, Valentin (sica i Inorgà) ,  Mateos, Xavier (nica, Fí)

Abstract AI-Helper 아이콘AI-Helper

Abstract Tm3+-doped cubic potassium yttrium fluoride, KY3F10, is a promising laser crystal for efficient watt-level lasers at ∼1.9 μm because of the relatively easy crystal growth by the Czochralski method, advantageous thermo-optical properties, high available Tm3+ doping levels and very ef...

Keyword

참고문헌 (56)

  1. Kaminskii 2013 Laser Crystals: Their Physics and Properties 

  2. J. Appl. Phys. Walsh 3 2772 1998 10.1063/1.367037 Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4 

  3. Opt. Commun. Camy 236 395 2004 10.1016/j.optcom.2004.03.055 Tm3+:CaF2 for 1.9 μm laser operation 

  4. J. Alloy. Comp. Brasse 803 442 2019 10.1016/j.jallcom.2019.06.288 Liquid Phase Epitaxy growth of Tm3+-doped CaF2 thin-films based on LiF solvent 

  5. Opt. Express Sottile 26 5368 2018 10.1364/OE.26.005368 Widely tunable, efficient 2 μm laser in monocrystalline Tm3+:SrF2 

  6. J. Alloy. Comp. Zhou 811 152046 2019 10.1016/j.jallcom.2019.152046 Effects of Sr2+ content on microstructure and spectroscopic properties of Nd3+ doped Ca1-xSrxF2 transparent ceramics 

  7. Opt. Lett. Galzerano 29 715 2004 10.1364/OL.29.000715 Widely tunable continuous-wave diode-pumped 2-μm Tm-Ho:KYF4 laser 

  8. Opt. Mater. Express Loiko 7 844 2017 10.1364/OME.7.000844 Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ∼2 μm 

  9. Opt. Express Cornacchia 12 1982 2004 10.1364/OPEX.12.001982 Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser 

  10. J. Alloy. Comp. Wang 212 145 2019 Up-conversion photoluminescence properties and energy transfer process of Ho3+,Yb3+ co-doped BaY2F8 fine fibers 

  11. Appl. Phys. B Braud 72 909 2001 10.1007/s003400100572 Spectroscopy and cw operation of a 1.85 μm Tm:KY3F10 laser 

  12. Opt. Lett. Camy 32 1462 2007 10.1364/OL.32.001462 Diode-pumped Pr3+:KY3F10 red laser 

  13. Opt. Lett. Schellhorn 38 504 2013 10.1364/OL.38.000504 In-band pumped Ho3+:KY3F10 2 μm laser 

  14. J. Lumin. Loiko 180 103 2016 10.1016/j.jlumin.2016.07.060 Judd-Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er:K2YF5 crystals 

  15. Can. J. Phys. Diaf 77 693 2000 10.1139/p99-019 Synthesis and spectroscopic studies of Tm3+-doped KY3F10 single crystals 

  16. J. Phys. Condens. Matter Friese 18 2677 2006 10.1088/0953-8984/18/9/007 Study of the temperature dependence of the structure of KY3F10 

  17. IEEE J. Sel. Top. Quantum Electron. Loiko 24 2018 10.1109/JSTQE.2018.2789886 Highly-efficient, compact Tm3+:RE2O3 (RE = Y, Lu, Sc) sesquioxide lasers based on thermal guiding 

  18. J. Alloy. Comp. Loiko 763 581 2018 10.1016/j.jallcom.2018.05.237 Monoclinic Tm:MgWO4 crystal: crystal-field analysis, tunable and vibronic laser demonstration 

  19. Scholle 471 2010 Frontiers in Guided Wave Optics and Optoelectronics 2 μm laser sources and their possible applications 

  20. Opt. Lett. Stoneman 15 486 1990 10.1364/OL.15.000486 Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers 

  21. Phys. Rev. B Braud 61 5280 2000 10.1103/PhysRevB.61.5280 Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm 

  22. Opt. Lett. Muti 44 3242 2019 10.1364/OL.44.003242 Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3 μm 

  23. J. Alloy. Comp. Orlovskii 6 182 2018 10.1016/j.jallcom.2018.05.027 Comparison of concentration dependence of relative fluorescence quantum yield and brightness in first biological window of wavelengths for aqueous colloidal solutions of Nd3+:LaF3 and Nd3+:KY3F10 nanocrystals synthesized by microwave-hydrothermal treatment 

  24. J. Phys. D Appl. Phys. Pang 51 355301 2018 10.1088/1361-6463/aad4dd Up-conversion luminescence and photo-thermal effect of KY3F10:Yb3+,Ho3+ nanocrystals 

  25. Mater. Res. Express Ichikawa 5 2018 10.1088/2053-1591/aaa0bc Evidence for a core-shell configuration in Tb-doped KY3F10 nanoparticles using synchrotron x-ray line profile and pair distribution function analyses 

  26. J. Electron. Mater. Debelo 47 2617 2018 10.1007/s11664-018-6089-9 Enhanced emission and improved crystallinity of KY3F10:Ho3+ thin films grown at high deposition temperature using pulsed laser deposition technique 

  27. J. Alloy. Comp. Peng 767 682 2018 10.1016/j.jallcom.2018.07.165 Lanthanide-doped KGd3F10 nanocrystals embedded glass ceramics: self-crystallization, optical properties and temperature sensing 

  28. Parisi 2011 Particular Single Crystals of Fluorides Doped with Rare Earth Ions A method of bulk crystals formation 

  29. J. Chem. Phys. Porcher 68 4183 1978 10.1063/1.436280 Crystal field parameters for Eu3+ in KY3F10. III. Radiative and nonradiative transition probabilities 

  30. IEEE J. Quantum Electron. Payne 28 2619 1992 10.1109/3.161321 Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+ 

  31. IEEE J. Quantum Electron. Aull 18 925 1982 10.1109/JQE.1982.1071611 Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections 

  32. Opt. Mater. Express Loiko 4 2241 2014 10.1364/OME.4.002241 Thermo-optic characterization of Yb:CaGdAlO4 laser crystal 

  33. Opt. Mater. Loiko 33 1688 2011 10.1016/j.optmat.2011.05.028 Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re = Gd 

  34. Mater. Chem. Phys. Debelo 190 62 2017 10.1016/j.matchemphys.2016.12.064 Pulsed laser deposited KY3F10:Ho3+ thin films: influence of target to substrate distance 

  35. Adv. Funct. Mater. Cho 20 1937 2010 10.1002/adfm.200902368 Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers 

  36. J. Opt. Soc. Am. B Loiko 33 D19 2016 10.1364/JOSAB.33.000D19 Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes 

  37. IEEE J. Quantum Electron. Caird 24 1077 1988 10.1109/3.231 Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser 

  38. IEEE J. Quantum Electron. Honea 33 1592 1997 10.1109/3.622641 115-W Tm: YAG diode-pumped solid-state laser 

  39. J. Raman Spectrosc. Mortier 22 393 1991 10.1002/jrs.1250220706 Raman scattering investigations of KY3F10 

  40. J. Phys. Chem. C Pollnau 120 26480 2016 10.1021/acs.jpcc.6b09594 Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+ 

  41. J. Phys. D Appl. Phys. Parisi 47 2014 10.1088/0022-3727/47/2/025101 Spectroscopy and laser test emission in Tm3+: BaYLuF8 single crystal 

  42. Appl. Phys. B Cornacchia 96 363 2009 10.1007/s00340-009-3555-3 LiGdF4:Tm3+: spectroscopy and diode-pumped laser experiments 

  43. Cornacchia 2005 Advanced Solid-State Photonics Comparative analysis of the 2 μm emission in Tm3+:BaY2F8 and Tm3+:KYF4: spectroscopy and laser experiment 

  44. Opt. Laser. Technol. Zhang 103 89 2018 10.1016/j.optlastec.2018.01.029 Compact passive Q-switching of a diode-pumped Tm,Y:CaF2 laser near 2 μm 

  45. Opt. Lett. Zhang 43 4300 2018 10.1364/OL.43.004300 High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+, La3+:CaF2 single crystal 

  46. Appl. Phys. B Schellhorn 91 71 2008 10.1007/s00340-008-2943-4 High-power diode-pumped Tm:YLF laser 

  47. Prog. Quantum Electron. Chénais 30 89 2006 10.1016/j.pquantelec.2006.12.001 On thermal effects in solid-state lasers: the case of ytterbium-doped materials 

  48. Dokl. Phys. Popov 54 221 2009 10.1134/S1028335809050012 Thermal conductivity of crystals formed by fluoritelike phases in MF-RF3 systems (M= Li, Na, and K, R = Rare Earth) 

  49. Opt. Express Serres 23 14108 2015 10.1364/OE.23.014108 Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber 

  50. Opt. Commun. Yasukevich 389 15 2017 10.1016/j.optcom.2016.12.023 Modeling of graphene Q-switched Tm lasers 

  51. IEEE Photonics Technol. Lett. Feng 27 7 2015 10.1109/LPT.2014.2357800 Efficient CW dual-wavelength and passively Q-switched Tm:LuAG lasers 

  52. Opt. Commun. Li 330 151 2014 10.1016/j.optcom.2014.05.049 Performance of diode-pumped Tm3+:Sc2SiO5 crystal passively Q-switched 2 μm laser 

  53. Opt. Express Xu 25 15322 2017 10.1364/OE.25.015322 First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic 

  54. Appl. Phys. B Qu 109 143 2012 10.1007/s00340-012-5122-6 Performance of 2 μm Tm:YAP pulse laser based on a carbon nanotube absorber 

  55. Laser Phys. Lett. Feng 10 2013 10.1088/1612-2011/10/9/095001 A diode-pumped passively Q-switched Tm, Ho:YAP laser with a single-walled carbon nanotube 

  56. Appl. Opt. Lan 55 4877 2016 10.1364/AO.55.004877 Passive Q-switching of microchip lasers based on Ho:YAG ceramic 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로