$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Development of empirical models to predict cooling performance of a thermoelectric radiant panel

Energy and buildings, v.202, 2019년, pp.109387 -   

Lim, Hansol (Corresponding author.) ,  Kang, Yong-Kwon ,  Jeong, Jae-Weon

Abstract AI-Helper 아이콘AI-Helper

Abstract Performance simulations of thermoelectric radiant panels (TERPs) provide valuable information for the use of TERPs as alternatives to conventional hydraulic radiant panels, which require refrigerants based on the vapor compression cycle. Several existing models are appropriate for the desi...

Keyword

참고문헌 (50)

  1. Appl. Therm. Eng. Lim 136 49 2018 10.1016/j.applthermaleng.2018.02.096 Energy saving potential of thermoelectric modules integrated into liquid desiccant system for solution heating and cooling 

  2. 2015 Proceedings of the Air Conditioning and Heat Pumps Technical Options Committee Montreal protocol on substances that deplete the ozone layer: report of the refrigeration 

  3. Inst. Phys. Publ. Houghton 68 1343 2005 Global warming 

  4. Renew. Sust. Ener. Rev. Abas 90 557 2018 10.1016/j.rser.2018.03.099 Natural and synthetic refrigerants, global warming: a review 

  5. Energy Proced. Devecio?lu 75 1452 2015 10.1016/j.egypro.2015.07.258 Characteristics of some new generation refrigerants with low GWP 

  6. Energy Build Li 192 93 2019 10.1016/j.enbuild.2019.03.031 Comparative study on energy efficiency of low GWP refrigerants in domestic refrigerators with capacity modulation 

  7. Energy Effic. Renew. Ener. William Goetzler 3673 2014 Energy savings potential and RD & D opportunities for non-vapor-compression HVAC 

  8. Goetzler 2016 The future of air conditioning for buildings 

  9. ASHRAE J. Goetzler 12 2014 Alternatives to HVAC technology 

  10. Energy Build. Rahimian 2019 Integrated hollow porous ceramic cuboids-finned heat pipes evaporative cooling system: numerical modelling and experimental validation 

  11. Energy Build. Liu 190 1 2019 10.1016/j.enbuild.2019.02.025 Analytical solution of heat and mass transfer process in internally cooled liquid desiccant dehumidifiers using refrigerant as cooling medium 

  12. Energy Build. Su 145 293 2017 10.1016/j.enbuild.2017.04.024 Performance analysis of a novel frost-free air-source heat pump with integrated membrane-based liquid desiccant dehumidification and humidification 

  13. Energy Build. Liu 102 207 2015 10.1016/j.enbuild.2015.05.029 Review of solar thermoelectric cooling technologies for use in zero energy buildings 

  14. Int. J. Green Energy Sharma 11 899 2014 10.1080/15435075.2013.829778 A review of thermoelectric devices for cooling applications 

  15. Lee 2016 Thermoelectrics: Design and Materials 

  16. Energy Cheon 173 244 2019 10.1016/j.energy.2019.02.012 Applicability of thermoelectric heat pump in a dedicated outdoor air system 

  17. Appl. Therm. Eng. Irshad 154 302 2019 10.1016/j.applthermaleng.2019.03.027 Sizing and life-cycle assessment of building integrated thermoelectric air cooling and photovoltaic wall system 

  18. Heat Tran. Eng. Lim 41 1 2019 10.1080/01457632.2019.1576412 Thermoelectric module integrated fuel cell in a liquid desiccant-assisted air-conditioning system 

  19. Renew. Energy Cai 130 968 2019 10.1016/j.renene.2018.07.007 Air source thermoelectric heat pump for simultaneous cold air delivery and hot water supply: full modeling and performance evaluation 

  20. Energy Luo 142 384 2018 10.1016/j.energy.2017.10.050 Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates 

  21. Indoor Built Environ. Lertsatitthanakorn 17 525 2008 10.1177/1420326X08099188 Study on the cooling performance and thermal comfort of a thermoelectric ceiling cooling panel system 

  22. J. Electron. Mater. Lertsatitthanakorn 38 1472 2009 10.1007/s11664-008-0637-7 Evaluation of the thermal comfort of a thermoelectric ceiling cooling panel (TE-CCP) system 

  23. Energy Build. Lim 169 353 2018 10.1016/j.enbuild.2018.03.062 Energy saving potential of thermoelectric radiant cooling panels with a dedicated outdoor air system 

  24. Appl. Therm. Eng. Shen 112 688 2017 10.1016/j.applthermaleng.2016.10.094 The optimization design and parametric study of thermoelectric radiant cooling and heating panel 

  25. Int. J. Heat Mass Trans. Luo 114 169 2017 10.1016/j.ijheatmasstransfer.2017.06.063 Three dimensional temperature field of thermoelectric radiant panel system: analytical modeling and experimental validation 

  26. Appl. Therm. Eng. Lim 144 248 2018 10.1016/j.applthermaleng.2018.08.065 Thermoelectric radiant cooling panel design: numerical simulation and experimental validation 

  27. Energy Build. Shen 59 123 2013 10.1016/j.enbuild.2012.12.041 Investigation of a novel thermoelectric radiant air-conditioning system 

  28. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Handbook: HVAC systems and equipment, chapter 6 panel heating and cooling, Atlanta, GA, 2016. 

  29. ASHRAE J. Jeong 48 56 2006 Ceiling radiant cooling panels 

  30. Build. Environ. Kim 137 208 2018 10.1016/j.buildenv.2018.04.006 Energy analysis of a hybrid radiant cooling system under hot and humid climates: a case study at shanghai in china 

  31. Renew. Sustain. Ener. Rev. Zhao 55 1083 2016 10.1016/j.rser.2015.11.028 Application of radiant floor cooling in large space buildings - A review 

  32. American Society of Heating, Refrigerating, and Air Conditioning Engineers, ANSI/ASHRAE standard 55-2013: thermal environmental conditions for human occupancy, Atlanta, GA, 2013. 

  33. Energy Build. Tian 47 636 2012 10.1016/j.enbuild.2012.01.005 Research on the actual cooling performance of ceiling radiant panel 

  34. Build. Environ. Walikewitz 84 151 2015 10.1016/j.buildenv.2014.11.004 The difference between the mean radiant temperature and the air temperature within indoor environments: a case study during summer conditions 

  35. Adv. Therm. Energy Storage Klinker 2014 Measurement setup to determine the thermal properties and dynamic thermal behavior of cooling ceilings with PCM 

  36. Energy Build. Fateh 153 231 2017 10.1016/j.enbuild.2017.08.007 Numerical and experimental investigation of an insulation layer with phase change materials (PCMs) 

  37. Jones 1997 Design and Analysis of Experiments 

  38. Cengel 2007 Heat and Mass Transfer: Fundamentals and Applications 

  39. ASHRAE Heiden 2010 ASHRAE guideline: engineering analysis of experimental data 

  40. Technical Data Sheet for HMN6055, Peltier Technology Co., Ltd, https://www.peltier.co.kr. 

  41. Technical Data Sheet for HP-199-1.4-0.8, TE technology, Inc, https://tetech.com/wp-content/uploads/2019/03/HP-199-1.4-0.8.pdf. 

  42. Technical Data Sheet for RC12-8, Marlow industries, https://cdn2.hubspot.net/hubfs/547732/Data_Sheets/RC12-8.pdf. 

  43. Technical Data Sheet for TEC1-12706, Hebei I.T. (Shanghai) Co., Ltd, https://www.hebeiltd.com.cn/peltier.datasheet/TEC1-12706.pdf. 

  44. Stat Ease, Design-expert® version 11 software, 2018, https://www.statease.com/docs/v11/. 

  45. Myers 2009 C.M. Anderson-Cook, Response Surface Methodology 

  46. Appl. Therm. Eng. Kim 146 306 2019 10.1016/j.applthermaleng.2018.09.131 Performance investigation of an independent dedicated outdoor air system for energy-plus houses 

  47. Energy Dong 123 432 2017 10.1016/j.energy.2017.02.005 Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system 

  48. Renew. Ener. Wong 33 1024 2008 10.1016/j.renene.2007.06.016 Thermal performance, power generation, daylight modelling and energy saving potential in a residential application 

  49. Energy Build. Niu 34 487 2002 10.1016/S0378-7788(01)00132-3 Energy savings potential of chilled-ceiling combined with desiccant cooling in hot and humid climates 

  50. Appl. Therm. Eng. Kim 108 804 2016 10.1016/j.applthermaleng.2016.07.185 Energy benefit of a dedicated outdoor air system over a desiccant-enhanced evaporative air conditioner 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로