$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Piezoresistivity of InAsP Nanowires: Role of Crystal Phases and Phosphorus Atoms in Strain-Induced Channel Conductances 원문보기

Molecules : a journal of synthetic chemistry and natural product chemistry, v.24 no.18, 2019년, pp.3249 -   

Kim, In (National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon 34141, Korea) ,  Kim, Han Seul (National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon 34141, Korea) ,  Ryu, Hoon (National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon 34141, Korea)

Abstract AI-Helper 아이콘AI-Helper

Strong piezoresistivity of InAsP nanowires is rationalized with atomistic simulations coupled to Density Functional Theory. With a focal interest in the case of the As(75%)-P(25%) alloy, the role of crystal phases and phosphorus atoms in strain-driven carrier conductance is discussed with a direct c...

참고문헌 (44)

  1. Smith Piezoresistance effect in germanium and silicon Phys. Rev. 1954 10.1103/PhysRev.94.42 94 42 

  2. Li Remarkable and Crystal-Structure-Dependent Piezoelectric and Piezoresistive Effects of InAs Nanowires Adv. Mater. 2015 10.1002/adma.201500037 27 2852 

  3. Pandey Structural and electronic property calculations of InxGa1-xAs alloy based on all electron potentials from first-principle theory Indian J. Pure Appl. Phys. 2016 54 66 

  4. 10.1016/bs.semsem.2015.07.001 Chen, Y., and Liao, X. (2016). Mechanical Behaviors of Semiconductor Nanowires, Elsevier. [1st ed.]. 

  5. Gong A wearable and highly sensitive pressure sensor with ultrathin gold nanowires Nat. Commun. 2014 10.1038/ncomms4132 5 3132 

  6. Ohlsson Nanowire resonant tunneling diodes Appl. Phys. Lett. 2002 10.1063/1.1527995 81 4458 

  7. Barlian Review: Semiconductor piezoresistance for microsystems Proc. IEEE 2009 10.1109/JPROC.2009.2013612 97 513 

  8. Arcangeli Gate-Tunable Spatial Modulation of Localized Plasmon Resonances Nano Lett. 2016 10.1021/acs.nanolett.6b02351 16 5688 

  9. Ning Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions Nat. Rev. Mater. 2017 10.1038/natrevmats.2017.70 2 17070 

  10. 10.3390/s19132994 Demontis, V., Rocci, M., Donarelli, M., Maiti, R., Zannier, V., Beltram, F., Sorba, L., Roddaro, S., Rossella, F., and Baratto, C. (2019). Conductometric Sensing with Individual InAs Nanowires. Sensors, 19. 

  11. Lieb Ionic-Liquid Gating of InAs Nanowire-Based Field-Effect Transistors Adv. Funct. Mater. 2019 10.1002/adfm.201804378 29 1804378 

  12. Jamond Piezo-generator integrating a vertical array of GaN nanowires Nanotechnology 2016 10.1088/0957-4484/27/32/325403 27 325403 

  13. Signorello Manipulating Surface States of III-V Nanowires with Uniaxial Stress Nano Lett. 2017 10.1021/acs.nanolett.6b05098 17 2816 

  14. Zheng Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires Nano Lett. 2016 10.1021/acs.nanolett.5b04842 16 1787 

  15. Zeng Correlation between Electrical Transport and Nanoscale Strain in InAs/In0.6Ga0.4As Core-Shell Nanowires Nano Lett. 2018 10.1021/acs.nanolett.8b01782 18 4949 

  16. Lee Electromechanical Properties and Spontaneous Response of the Current in InAsP Nanowires Nano Lett. 2016 10.1021/acs.nanolett.6b02155 16 6738 

  17. Lee Electronic Structures of Strained InAsxP1−x by Density Functional Theory J. Nanosci. Nanotechnol. 2018 10.1166/jnn.2018.15712 18 6650 

  18. Akiyama Effects of stacking sequence on the electrical conductivity of InAs: A combination of density functional theory and Boltzmann transport equation calculations Jpn. J. Appl. Phys. 2015 10.7567/JJAP.54.075001 54 075001 

  19. Kresse Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 1996 10.1016/0927-0256(96)00008-0 6 15 

  20. Perdew Restoring the density-gradient expansion for exchange in solids and surfaces Phys. Rev. Lett. 2008 10.1103/PhysRevLett.100.136406 100 136406 

  21. Soler The SIESTA method for ab initio order-N materials J. Phys. Cond. Mat. 2002 10.1088/0953-8984/14/11/302 14 2745 

  22. Troullier Efficient pseudopotentials for plane-wave calculations Phys. Rev. B 1991 10.1103/PhysRevB.43.1993 43 1993 

  23. Artacho Linear-scaling ab-initio calculations for large and complex systems Phys. Status Solidi B Basic Res. 1999 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0 215 809 

  24. Kittel, C. (2004). Introduction to Solid State Physics, Wiley. [8th ed.]. 

  25. Madsen BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients Comput. Phys. Commun. 2018 10.1016/j.cpc.2018.05.010 231 140 

  26. Fowlie Conductivity and Local Structure of LaNiO3 Thin Films Adv. Mater. 2017 10.1002/adma.201605197 29 1605197 

  27. Ivanov The effect of energy-dependent electron scattering on thermoelectric transport in novel topological semimetal CoSi J. Phys. Condens. Matter 2018 10.1088/1361-648X/aae6d1 30 475501 

  28. Zhao Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles Sci. Rep. 2016 10.1038/srep19968 6 19968 

  29. (2019, September 01). Nurion-Cray CS500, Intel Xeon Phi 7250 68C 1.4 GHz, Intel Omni-Path|TOP500 Supercomputer Sites. Available online: https://www.top500.org/system/179421. 

  30. Blomqvist The atomic simulation environment-A Python library for working with atoms J. Phys. Condens. Matter 2017 10.1088/1361-648X/aa680e 29 273002 

  31. Yadav Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers J. Appl. Phys. 2016 10.1063/1.4953593 119 224304 

  32. Dacal Ab initio calculations of indium arsenide in the wurtzite phase: Structural, electronic and optical properties Mater. Res. Express 2014 10.1088/2053-1591/1/1/015702 1 015702 

  33. Hori Effect of strain on band structure and electron transport in InAs Solid-State Electron. 1999 10.1016/S0038-1101(99)00126-4 43 1813 

  34. Kriegner Unit cell parameters of wurtzite InP nanowires determined by X-ray diffraction Nanotechnology 2011 10.1088/0957-4484/22/42/425704 22 425704 

  35. Zafar Indium phosphide nanowires and their applications in optoelectronic devices Proc. Math. Phys. Eng. Sci. 2016 472 20150804 

  36. Haas Calculation of the lattice constant of solids with semilocal functionals Phys. Rev. B Condens. Matter Mater. Phys. 2009 10.1103/PhysRevB.79.085104 79 085104 

  37. Denton Vegard’s law Phys. Rev. A 1991 10.1103/PhysRevA.43.3161 43 3161 

  38. Kriegner Unit Cell Structure of Crystal Polytypes in InAs and InSb Nanowires Nano Lett. 2011 10.1021/nl1041512 11 1483 

  39. 10.1007/978-3-662-44581-5 Evarestov, R. (2015). Theoretical Modeling of Inorganic Nanostructures, Springer. NanoScience and Technology. 

  40. Humphrey VMD: Visual molecular dynamics J. Mol. Graph. 1996 10.1016/0263-7855(96)00018-5 14 33 

  41. Ehrenreich Electron mobility of indium arsenide phosphide [In(AsyP1−y)] J. Phys. Chem. Solids 1959 10.1016/0022-3697(59)90255-0 12 97 

  42. Murayama Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces Phys. Rev. B 1994 10.1103/PhysRevB.49.4710 49 4710 

  43. De Predicted band structures of III-V semiconductors in the wurtzite phase Phys. Rev. B Condens. Matter Mater. Phys. 2010 10.1103/PhysRevB.81.155210 81 155210 

  44. Hjort Electronic and Structural Differences between Wurtzite and Zinc Blende InAs Nanowire Surfaces: Experiment and Theory ACS Nano 2014 10.1021/nn504795v 8 12346 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로