$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Appropriate Protection Scheme for DC Grid Based on the Half Bridge Modular Multilevel Converter System 원문보기

Energies, v.12 no.10, 2019년, pp.1837 -   

Lee, Ho-Yun ,  Asif, Mansoor ,  Park, Kyu-Hoon ,  Mun, Hyun-Min ,  Lee, Bang-Wook

Abstract AI-Helper 아이콘AI-Helper

The half bridge (HB) modular multilevel converter (MMC) technology is considered a breakthrough to mitigate the shortcomings of the conventional voltage source converter (VSC) in high-voltage direct-current (HVDC) grid application. However, interruption of the DC fault is still a challenge due to fa...

참고문헌 (51)

  1. An Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China High Volt. 2017 10.1049/hve.2017.0010 2 1 

  2. Li DC fault analysis for modular multilevel converter-based system J. Mod. Power Syst. Clean Energy 2017 10.1007/s40565-015-0174-3 5 275 

  3. Wang Control and protection sequence for recovery and reconfiguration of an offshore integrated MMC multi-terminal HVDC system under DC faults Int. J. Electr. Power Energy Syst. 2017 10.1016/j.ijepes.2016.10.003 86 81 

  4. Rodriguez Multilevel converters: An enabling technology for high-power applications Proc. IEEE. 2009 10.1109/JPROC.2009.2030235 97 1791 

  5. Lee Assessment of appropriate SFCL type considering DC fault Interruption in Full Bridge Modular Multilevel Converter HVDC system Phys. C Supercond. Its Appl. 2019 10.1016/j.physc.2019.04.006 563 1 

  6. 10.1109/EPEC.2011.6070260 Chen, X., and Zhao, C. (2011, January 3-5). Research on the fault characteristics of HVDC based on modular multilevel converter. Proceedings of the 2011 IEEE Electrical Power and Energy Conference, Winnipeg, MB, Canada. 

  7. Jonsson, T., and Lundberg, S. (2013, January 9-11). Converter Technologies and Functional Requirements for Reliable and Economical HVDC Grid Design. Proceedings of the 2013 CIGRE Canada Conference, Calgary, AB, Canada. 

  8. Najmi, V. (2015). Modelling, Control and Design Considerations for Modular Multilevel Converters. [Master’s Thesis, Electrical Engineering Department, Virginia Polytechnic Institute and State University]. 

  9. Adam Half-and full-bridge modular multilevel converter models for simulations of full-scale HVDC links and multiterminal DC grids IEEE J. Emerg. Sel. Top. Power Electron. 2014 10.1109/JESTPE.2014.2315833 2 1089 

  10. 10.3390/en11040941 Xu, Z., Xiao, H., Xiao, L., and Zhang, Z. (2018). DC fault analysis and clearance solutions of MMC-HVDC systems. Energies, 11. 

  11. Franck HVDC circuit breakers: A review identifying future research needs IEEE Trans. Power Deliv. 2011 10.1109/TPWRD.2010.2095889 26 998 

  12. Pei Design and Experimental Tests of a Superconducting Hybrid DC Circuit Breaker IEEE Trans. Appl. Supercond. 2018 10.1109/TASC.2018.2793226 28 5000205 

  13. Song A modular multilevel converter integrated with DC circuit breaker IEEE Trans. Power Deliv. 2018 10.1109/TPWRD.2018.2815550 33 2502 

  14. Zhang Application of a Novel Superconducting Fault Current Limiter in a VSC-HVDC System IEEE Trans. Appl. Supercond. 2017 10.1109/TASC.2017.2656634 27 5600706 

  15. Mokhberdoran Application study of superconducting fault current limiters in meshed HVDC grids protected by fast protection relays Electr. Power Syst. Res. 2017 10.1016/j.epsr.2016.09.008 143 292 

  16. 10.3390/ma12010026 Chen, L., He, H., Li, G., Chen, H., Wang, L., Chen, X., Tian, X., Xu, Y., Ren, L., and Tang, Y. (2018). Study of resistive-type superconducting fault current limiters for a hybrid high voltage direct current system. Materials (Basel), 12. 

  17. 10.3390/en9100769 Chen, L., Tu, X., Chen, H., Yang, J., Wu, Y., Shu, X., and Ren, L. (2016). Technical evaluation of superconducting fault current limiters used in a micro-grid by considering the fault characteristics of distributed generation, energy storage and power loads. Energies, 9. 

  18. Lee Feasible Application Study of Several Types of Superconducting Fault Current Limiters in HVDC Grids IEEE Trans. Appl. Supercond. 2018 10.1109/TASC.2018.2799745 28 5601205 

  19. Bock Resistive superconducting fault current limiters are becoming a mature technology IEEE Trans. Appl. Supercond. 2015 10.1109/TASC.2014.2364916 25 5600604 

  20. Jiang Fully Controlled Hybrid Bridge Type Superconducting Fault Current Limiter IEEE Trans. Appl. Supercond. 2014 24 5602705 

  21. Morandi Design of a DC resistive SFCL for application to the 20 kV distribution system IEEE Trans. Appl. Supercond. 2010 10.1109/TASC.2010.2043723 20 1122 

  22. Yang Design and Application of Superconducting Fault Current Limiter in a Multiterminal HVDC System IEEE Trans. Appl. Supercond. 2017 10.1109/TASC.2017.2669152 27 3800805 

  23. Tixador Technical and Economic Analysis of the R-Type SFCL for HVDC Grids Protection IEEE Trans. Appl. Supercond. 2017 27 5602009 

  24. Wei Optimized design of coils and iron cores for a saturated iron core superconducting fault current limiter IEEE Trans. Appl. Supercond. 2016 10.1109/TASC.2016.2601621 26 5603904 

  25. Lv Research on application of superconducting fault current limiter in MMC-MTDC J. Eng. 2017 2017 1307 

  26. Ye Study of superconducting fault current limiters for system integration of wind farms IEEE Trans. Appl. Supercond. 2010 10.1109/TASC.2009.2039469 20 1233 

  27. 10.1109/ICCES.2012.6408518 Aly, M.M., and Mohamed, E.A. (2012, January 27-29). Comparison between resistive and inductive superconducting fault current limiters for fault current limiting. Proceedings of the ICCES 2012: 2012 International Conference on Computer Engineering and Systems, Cairo, Egypt. 

  28. Chen Design and Application of a Superconducting Fault Current Limiter in DC Systems IEEE Trans. Appl. Supercond. 2014 10.1109/TASC.2013.2284936 24 5601305 

  29. 10.1109/PES.2006.1709205 Schmitt, H. (2006, January 18-22). Fault current limiters report on the activities of CIGRE WG A3.16. Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada. 

  30. 10.1049/cp.2014.0859 Mokhberdoran, A., Leite, H., Carvalho, A., and Silva, N. (2014, January 24-25). A Review on HVDC Circuit Breakers. Proceedings of the 3rd Renewable Power Generation Conference (RPG 2014), Naples, Italy. 

  31. Zhang Short-circuit current calculation and performance requirement of HVDC breakers for MMC-MTDC systems IEEJ Trans. Electr. Electron. Eng. 2016 10.1002/tee.22203 11 168 

  32. 10.3390/app8101834 Lee, H.-Y., Asif, M., Park, K.-H., and Lee, B.-W. (2018). Assessment of Appropriate MMC Topology Considering DC Fault Handling Performance of Fault Protection Devices. Appl. Sci., 8. 

  33. 10.1109/ECCE.2015.7310107 Acharya, S., Vechalapu, K., Bhattacharya, S., and Yousefpoor, N. (2015, January 20-24). Comparison of DC fault current limiting capability of various modular structured multilevel converters within a multi-terminal DC grid. Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition-ECCE 2015, Montreal, QC, Canada. 

  34. Lim Successful fault current interruption on DC circuit breaker IET Power Electron. 2016 10.1049/iet-pel.2015.0351 9 207 

  35. Zheng Transient performance improvement of microgrid by a resistive superconducting fault current limiter IEEE Trans. Appl. Supercond. 2015 10.1109/TASC.2015.2391120 25 5602305 

  36. Kar Selection criteria of high T c superconducting tapes for superconducting fault current limiter applications IEEE Trans. Appl. Supercond. 2012 10.1109/TASC.2011.2176458 22 5602804 

  37. Kar Study on recovery performance of high Tc superconducting tapes for resistive type superconducting fault current limiter applications Phys. Procedia 2012 10.1016/j.phpro.2012.06.281 36 1231 

  38. Chen Comparison of Inductive and Resistive SFCL to Robustness Improvement of a VSC-HVDC System with Wind Plants Against DC Fault IEEE Trans. Appl. Supercond. 2016 10.1109/TASC.2016.2595622 26 5603508 

  39. Noe High-temperature superconductor fault current limiters: Concepts, applications, and development status Supercond. Sci. Technol. 2007 10.1088/0953-2048/20/3/R01 20 R15 

  40. Lee A Novel Model of HVDC Hybrid-Type Superconducting Circuit Breaker and Its Performance Analysis for Limiting and Breaking DC Fault Currents IEEE Trans. Appl. Supercond. 2015 25 5603009 

  41. Sung Study on a series resistive SFCL to improve power system transient stability: Modeling, simulation, and experimental verification IEEE Trans. Ind. Electron. 2009 10.1109/TIE.2009.2018432 56 2412 

  42. Li Research on Saturated Iron-Core Superconductive Fault Current Limiters Applied in VSC-HVDC Systems IEEE Trans. Appl. Supercond. 2016 10.1109/TASC.2016.2601649 26 5603805 

  43. Sarkar Harmonic analysis of a saturated iron-core superconducting fault current limiter using Jiles-Atherton hysteresis model Model. Meas. Control A 2016 89 101 

  44. Rhee Impacts of superconducting fault current limiters on the recloser operation in distribution electric power systems IEEE Trans. Appl. Supercond. 2011 10.1109/TASC.2010.2089958 21 2197 

  45. Na Design and tests of prototype hybrid superconducting fault current limiter with fast switch IEEE Trans. Appl. Supercond. 2012 10.1109/TASC.2011.2182334 22 5602604 

  46. Li Technical Requirements of the DC Superconducting Fault Current Limiter IEEE Trans. Appl. Supercond. 2018 28 5602805 

  47. 10.1109/EPE.2016.7695635 Hassanpoor, A., Hafner, Y.J., Nami, A., and Vinothkumar, K. (2016, January 5-9). Cost-effective solutions for handling dc faults in VSC HVDC transmission. Proceedings of the 2016 18th European Conference on Power Electronics and Applications, EPE 2016 ECCE Europe, Karlsruhe, Germany. 

  48. Earth Fault Clearing on an HV DC Transmission Line, with Special Consideration of the Properties of the DC Arc in Free Air IEEE Trans. Power Appar. Syst. 1967 10.1109/TPAS.1967.291956 PAS-86 298 

  49. IEEE Power & Energy Society (2012). IEEE Guide for Automatic Reclosing of Circuit Breakers for AC Distribution and Transmission Lines, IEEE Power & Energy Society. 

  50. (2016, April 10). Omicron Electronics Corp. Available online: https://www.omicronenergy.com/download/document/F5363C63-E346-48E9-95DE-0A78861B762F/. 

  51. (2019, April 07). Network Protection & Automation Guide. Available online: http://rpa.energy.mn/wp-content/uploads/2016/07/network-protection-and-automation-guide-book.pdf. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로