$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review 원문보기

Energies, v.12 no.12, 2019년, pp.2310 -   

Fiorenza, Patrick (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), 95121 Catania, Italy) ,  Giannazzo, Filippo (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), 95121 Catania, Italy) ,  Roccaforte, Fabrizio (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), 95121 Catania, Italy)

Abstract AI-Helper 아이콘AI-Helper

This paper gives an overview on some state-of-the-art characterization methods of SiO2/4H-SiC interfaces in metal oxide semiconductor field effect transistors (MOSFETs). In particular, the work compares the benefits and drawbacks of different techniques to assess the physical parameters describing t...

참고문헌 (80)

  1. Cooper Vertical Tri-Gate Power MOSFETs in 4H-SiC Mater. Sci. Forum 2018 10.4028/www.scientific.net/MSF.924.680 924 680 

  2. 10.1109/ISPSD.2012.6229010 Ohashi, H. (2012, January 3-7). Power devices then and now, strategy of Japan. Proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD2012), Bruges, Belgium. 

  3. Baliga, B.J. (2005). Silicon Carbide Power Devices, World Scientific Co. Pte. Ltd. 

  4. Fiorenza Negative charge trapping effects in Al2O3 films grown by atomic layer depositiononto thermally oxidized 4H-SiC AIP Adv. 2016 10.1063/1.4960213 6 075021 

  5. 10.1109/IEDM.2012.6478998 Hosoi, T., Azumo, S., Kashiwagi, Y., Hosaka, S., Nakamura, R., Mitani, S., Nakano, Y., Asahara, H., Nakamura, T., and Kimoto, T. (2012, January 10-13). Performance and Reliability Improvement in SiC Power MOSFETs by Implementing AlON High-k Gate Dielectrics. Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA. 

  6. Kimoto Material science and device physics in SiC technology for high-voltage power devices Jpn. J. Appl. Phys. 2015 10.7567/JJAP.54.040103 54 040103 

  7. Cabello Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review Mater. Sci. Semicon. Proc. 2018 10.1016/j.mssp.2017.10.030 78 22 

  8. Roccaforte Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices Microelectron. Eng. 2018 10.1016/j.mee.2017.11.021 187-188 66 

  9. Yano Threshold Voltage Instability in 4H-SiC MOSFETs With Phosphorus-Doped and Nitrided Gate Oxides IEEE Trans. Electron. Devices 2015 10.1109/TED.2014.2358260 62 324 

  10. Lelis Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs IEEE Trans. Electron Devices 2015 10.1109/TED.2014.2356172 62 316 

  11. Stesmans Interfacial Defects in SiO2 Revealed by Photon Stimulated Tunneling of Electrons Phys. Rev. Lett. 1997 10.1103/PhysRevLett.78.2437 78 2437 

  12. Pensl Defect-engineering in SiC by ion implantation and electron irradiation Microelectron. Eng. 2006 10.1016/j.mee.2005.10.040 83 146 

  13. Zhang Characterization of near-interface traps at 4H-SiC metal-oxide-semiconductor interfaces using modified distributed circuit model Appl. Phys. Express 2017 10.7567/APEX.10.064101 10 064101 

  14. Fujino Quantitative Characterization of Near-Interface Oxide Traps in 4H-SiC MOS Capacitors by Transient Capacitance Measurements ECS Trans. 2015 10.1149/06905.0219ecst 69 219 

  15. Umeda Behavior of nitrogen atoms in SiC-SiO2 interfaces studied by electrically detected magnetic resonance Appl. Phys. Lett. 2011 10.1063/1.3644156 99 142105 

  16. Roccaforte Challenges for energy efficient wide band gap semiconductor power devices Phys. Status Solidi A 2014 10.1002/pssa.201300558 211 2063 

  17. Li Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing Appl. Phys. Lett. 1997 10.1063/1.118773 70 2028 

  18. Chung Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide Appl. Phys. Lett. 2000 10.1063/1.126167 76 1713 

  19. Lipkin N2O Processing Improves the 4H-SiC:SiO2 Interface Mater. Sci. Forum 2002 10.4028/www.scientific.net/MSF.389-393.985 389-393 985 

  20. Lu Effect of process variations and ambient temperature on electron mobility at the SiO2/4H-SiC interface IEEE Trans. Electron Devices 2003 10.1109/TED.2003.814974 50 1582 

  21. Harada Relationship between channel mobility and interface state density in SiC metal-oxide-semiconductor field-effect transistor J. Appl. Phys. 2002 10.1063/1.1428085 91 1568 

  22. Brosselard Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors J. Appl. Phys. 2006 10.1063/1.2395597 100 114508 

  23. Jamet Effects of nitridation in gate oxides grown on 4H-SiC J. Appl. Phys. 2001 10.1063/1.1412579 90 5058 

  24. Dhar Temperature Dependence of Inversion Layer Carrier Concentration and Hall Mobility in 4H-SiC MOSFETs Mater. Sci. Forum 2012 10.4028/www.scientific.net/MSF.717-720.713 717-720 713 

  25. Chung Improved Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide IEEE Electron Devices Lett. 2001 10.1109/55.915604 22 176 

  26. Kosugi High Temperature Rapid Thermal Oxidation and Nitridation of 4H-SiC in Diluted N2O and NO Ambient Mater. Sci. Forum 2005 10.4028/www.scientific.net/MSF.483-485.669 483-485 669 

  27. Wang The effect of gate oxide processes on the performance of 4H-SiC MOSFETs and gate-controlled diodes IEEE Trans. Electron Devices 2008 10.1109/TED.2008.926674 55 2046 

  28. Rozen Scaling Between Channel Mobility and Interface State Density in SiC MOSFETs IEEE Trans. Electron Devices 2011 10.1109/TED.2011.2164800 58 3808 

  29. Frazzetto Limiting mechanism of inversion channel mobility in Al-implanted lateral 4H-SiC metal-oxide semiconductor field-effect transistors Appl. Phys. Lett. 2011 10.1063/1.3627186 99 072117 

  30. Fiorenza Influence of the surface morphology on the channel mobility of lateral implanted 4H-SiC(0001) metal-oxide-semiconductor field-effect transistors J. Appl. Phys. 2012 10.1063/1.4759354 112 084501 

  31. Dhar Interface Passivation for Silicon Dioxide Layers on Silicon Carbide MRS Bull. 2005 10.1557/mrs2005.75 30 288 

  32. Kobayashi Reduction of interface state density in SiC (0001) MOS structures by post-oxidation Ar annealing at high temperature AIP Adv. 2017 10.1063/1.4980024 7 045008 

  33. Hatakeyama Characterization of traps at nitrided SiO2/SiC interfaces near the conduction band edge by using Hall effect measurements Appl. Phys. Express 2017 10.7567/APEX.10.046601 10 046601 

  34. Asaba Novel Gate Insulator Process by Nitrogen Annealing for Si-Face SiC MOSFET with High-Mobility and High-Reliability Mater. Sci. Forum 2018 10.4028/www.scientific.net/MSF.924.457 924 457 

  35. Schroder, D.K. (2006). Semiconductor Material and Device Characterization, Wiley. [3rd ed.]. 

  36. Martens On the Correct Extraction of Interface Trap Density of MOS Devices with High-Mobility Semiconductor Substrates IEEE Trans. Electron Devices 2008 10.1109/TED.2007.912365 55 547 

  37. Yoshioka Generation of very fast states by nitridation of the SiO2/SiC interface J. Appl. Phys. 2012 10.1063/1.3673572 111 014502 

  38. Nakazawa Interface Properties of 4H-SiC (11¯20) and (1¯100) MOS Structures Annealed in NO IEEE Trans. Electron Devices 2015 10.1109/TED.2014.2352117 62 309 

  39. Groeseneken A reliable approach to charge-pumping measurements in MOS transistors IEEE Trans. Electron Devices 1984 10.1109/T-ED.1984.21472 ED-31 42 

  40. Okamoto Analysis of Anomalous Charge-Pumping Characteristics on 4H-SiC MOSFETs IEEE Trans. Electron Devices 2008 10.1109/TED.2008.926639 55 2013 

  41. Salinaro Charge Pumping Measurements on Differently Passivated Lateral 4H-SiC MOSFETs IEEE Trans. Electron Devices 2015 10.1109/TED.2014.2372874 62 155 

  42. Saks Hall mobility and free electron density at the SiC/SiO2 interface in 4H-SiC Appl. Phys. Lett. 2000 10.1063/1.1326046 77 3281 

  43. Uhnevionak Comprehensive Study of the Electron Scattering Mechanisms in 4H-SiC MOSFETs IEEE Trans. Electron Devices 2015 10.1109/TED.2015.2447216 62 2562 

  44. Hauck An adapted method for analyzing 4H silicon carbide metal-oxide-semiconductor field-effect transistors Commun. Phys. 2019 10.1038/s42005-018-0102-8 2 5 

  45. 10.4028/www.scientific.net/MSF.963.473 Cabello, M., Soler, V., Haasmann, D., Montserrat, J., Rebollo, J., and Godignon, P. (2019, May 20). Evidence of Channel Mobility Anisotropy on 4H-SiC MOSFETs with Low Interface Trap Density Invited Poster ECSCRM 2018. Available online: https://warwick.ac.uk/fac/sci/eng/ecscrm2018/programme/ecscrm_programme_2018.pdf. 

  46. Fiorenza Nanoscale probing of the lateral homogeneity of donors concentration in nitridated SiO2/4H-SiC interfaces Nanotechnology 2016 10.1088/0957-4484/27/31/315701 27 315701 

  47. Fiorenza A look underneath the SiO2/4H-SiC interface after N2O thermal treatments Beilstein J. Nanotechnol. 2013 10.3762/bjnano.4.26 4 249 

  48. Saitoh Interface Properties of SiO2/4H-SiC(0001) with Large Off-Angles Formed by N2O Oxidation Mater. Sci. Forum 2007 10.4028/www.scientific.net/MSF.556-557.659 556-557 659 

  49. Kosugi Fixed nitrogen atoms in the SiO2/SiC interface region and their direct relationship to interface trap density Appl. Phys. Lett. 2011 10.1063/1.3659689 99 182111 

  50. Swanson Correlating macroscopic and nanoscale electrical modifications of SiO2/4H-SiC interfaces upon post-oxidation-annealing in N2O and POCl3 Appl. Phys. Lett. 2012 10.1063/1.4766175 101 193501 

  51. Fiorenza SiO2/4H-SiC interface doping during post-deposition-annealing of the oxide in N2O or POCl3 Appl. Phys. Lett. 2013 10.1063/1.4824980 103 153508 

  52. Fiorenza Electron trapping at SiO2/4H-SiC interface probed by transient capacitance measurements and atomic resolution chemical analysis Nanotechnology 2018 10.1088/1361-6528/aad129 29 395702 

  53. Regoutz Interface chemistry and electrical characteristics of 4H-SiC/SiO2 after nitridation in varying atmospheres J. Mater. Chem. C 2018 10.1039/C8TC02935K 6 12079 

  54. 10.1007/978-3-540-74085-8_2 Giannazzo, F., Fiorenza, P., and Raineri, V. (2008). Carrier transport in advanced semiconductor materials. Applied Scanning Probe Methods X, Springer. 

  55. Fiorenza Temperature-dependent Fowler-Nordheim electron barrier height in SiO2/4H-SiC MOS capacitors Mater. Sci. Semicon. Process. 2018 10.1016/j.mssp.2017.11.024 78 38 

  56. Okamoto Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide IEEE Electron Devices Lett. 2010 10.1109/LED.2010.2047239 31 710 

  57. Yano Improved Stability of 4H-SiC MOS Device Properties by Combination of NO and POCl3 Annealing Mater. Sci. Forum 2013 10.4028/www.scientific.net/MSF.740-742.727 740-742 727 

  58. Sharma High-Mobility Stable 4H-SiC MOSFETs Using a Thin PSG Interfacial Passivation Layer IEEE Electron Devices Lett. 2013 10.1109/LED.2012.2232900 34 175 

  59. Modic High Channel Mobility 4H-SiC MOSFETs by Antimony Counter-Doping IEEE Electron Devices Lett. 2014 10.1109/LED.2014.2336592 35 894 

  60. Lichtenwalner High mobility 4H-SiC (0001) transistors using alkali and alkaline earth interface layers Appl. Phys. Lett. 2014 10.1063/1.4901259 105 182107 

  61. Okamoto Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation IEEE Electron Devices Lett. 2014 10.1109/LED.2014.2362768 35 1176 

  62. Xu Structure and chemistry of passivated SiC/SiO2 interfaces Appl. Phys. Lett. 2016 10.1063/1.4951677 108 201607 

  63. Yang High Mobility 4H-SiC Lateral MOSFETs Using Lanthanum Silicate and Atomic Layer Deposited SiO2 IEEE Electron Devices Lett. 2015 10.1109/LED.2015.2399891 36 312 

  64. Li Oxidation induced stress in SiO2/SiC structures Appl. Phys. Lett. 2017 10.1063/1.4979544 110 141604 

  65. Lichtenwalner High-Mobility SiC MOSFETs with Chemically Modified Interfaces Mater. Sci. Forum 2015 10.4028/www.scientific.net/MSF.821-823.749 821-823 749 

  66. Fiorenza Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3 Appl. Phys. A 2014 10.1007/s00339-013-7824-y 115 333 

  67. Morel Threshold voltage instability in SiC MOSFETs as a consequence of current conduction in their body diode Microelectron. Reliab. 2018 88-90 636 

  68. Fiorenza Effects of interface states and near interface traps on the threshold voltage stability of GaN and SiC transistors employing SiO2 as gate dielectric J. Vacuum Sci. Technol. B 2017 10.1116/1.4967306 35 01A101 

  69. Fiorenza Fowler-Nordheim tunneling at SiO2/4H-SiC interfaces in metal-oxide-semiconductor field effect transistors Appl. Phys. Lett. 2014 10.1063/1.4898009 105 142108 

  70. Fiorenza Near interface traps in SiO2/4H-SiC metal-oxide-semiconductor field effect transistors monitored by temperature dependent gate current transient measurements Appl. Phys. Lett. 2016 10.1063/1.4955465 109 012102 

  71. Hayashi Hole trapping in SiC-MOS devices evaluated by fast-capacitance-voltage method Jpn. J. Appl. Phys. 2018 10.7567/JJAP.57.04FR15 57 04FR15 

  72. Bauza Analytical study of the contribution of fast and slow oxide traps to the charge pumping current in MOS structures Solid-State Electron. 1996 10.1016/0038-1101(95)00156-5 39 563 

  73. Paulsen Observation of Near-Interface Oxide Traps with the Charge-Pumping Technique IEEE Electron Device Lett. 1992 10.1109/55.192866 13 627 

  74. Chanana Fowler-Nordheim hole tunneling in p-SiC/SiO2 structures Appl. Phys. Lett. 2000 10.1063/1.1318229 77 2560 

  75. Aichinger Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs Microelectron. Reliab. 2018 10.1016/j.microrel.2017.11.020 80 68 

  76. Pande Direct Measurement of Active Near-Interface Traps in the Strong-Accumulation Region of 4H-SiC MOS Capacitors IEEE J. Electron Devices Soc. 2018 10.1109/JEDS.2018.2820729 6 468 

  77. 10.1103/PhysRevB.72.115323 Knaup, J.M., Deák, P., Frauenheim, T., Gali, A., Hajnal, Z., and Choyke, W.J. Defects in SiO2 as the possible origin of near interface traps in the SiC/SiO2 system: A systematic theoretical study. Phys. Rev. B, 2005 72, 115323. 

  78. Devynck Charge transition levels of carbon-, oxygen-, and hydrogen-related defects at the SiC/SiO2 interface through hybrid functionals Phys. Rev. B 2011 10.1103/PhysRevB.84.235320 84 235320 

  79. Zheleva Transition layers at the SiO2/Si C interface Appl. Phys. Lett. 2008 10.1063/1.2949081 93 022108 

  80. Biggerstaff Relationship between 4H-SiC/SiO2 transition layer thickness and mobility Appl. Phys. Lett. 2009 10.1063/1.3144272 95 032108 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로