$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Stochastic Dynamic Analysis of an Offshore Wind Turbine Structure by the Path Integration Method 원문보기

Energies, v.12 no.16, 2019년, pp.3051 -   

Zhao, Yue ,  Lian, Jijian ,  Lian, Chong ,  Dong, Xiaofeng ,  Wang, Haijun ,  Liu, Chunxi ,  Jiang, Qi ,  Wang, Pengwen

Abstract AI-Helper 아이콘AI-Helper

Stochastic dynamic analysis of an offshore wind turbine (OWT) structure plays an important role in the structural safety evaluation and reliability assessment of the structure. In this paper, the OWT structure is simplified as a linear single-degree-of-freedom (SDOF) system and the corresponding joi...

참고문헌 (46)

  1. Wang A review on recent advancements of substructures for offshore wind turbines Energy Convers. Manag. 2018 10.1016/j.enconman.2017.12.061 158 103 

  2. Ahmed The challenges and possible solutions of horizontal axis wind turbines as a clean energy solution for the future Renew. Sustain. Energy Rev. 2014 10.1016/j.rser.2014.06.004 38 439 

  3. Esteban Why offshore wind energy? Renew. Energy 2011 10.1016/j.renene.2010.07.009 36 444 

  4. Luca A procedure for deriving wind turbine noise limits by taking into account annoyance Sci. Total Environ. 2019 10.1016/j.scitotenv.2018.08.107 648 728 

  5. Fredianelli Analytical assessment of wind turbine noise impact at receiver by means of residual noise determination without the wind farm shutdown Noise Control Eng. J. 2017 10.3397/1/376558 65 417 

  6. Michaud Exposure to wind turbine noise: Perceptual responses and reported health effects J. Acoust. Soc. Am. 2016 10.1121/1.4942391 139 1443 

  7. Snyder A comparison of offshore wind power development in europe and the U.S.: Patterns and drivers of development Appl. Energy 2009 10.1016/j.apenergy.2009.02.013 86 1845 

  8. Michalak Wind energy development in the world, Europe and Poland from 1995 to 2009; current status and future perspectives Renew. Sustain. Energy Rev. 2011 10.1016/j.rser.2011.02.008 15 2330 

  9. Hong Offshore wind energy potential in China: Under technical, spatial and economic constraints Energy 2011 10.1016/j.energy.2011.03.071 36 4482 

  10. 10.3390/app9020231 Piasecka, I., Tomporowski, A., Flizikowski, J., Kruszelnicka, W., Kasner, R., and Mroziński, A. (2019). Life Cycle Analysis of Ecological Impacts of an Offshore and a Land-Based Wind Power Plant. Appl. Sci., 9. 

  11. 10.3390/app9020278 Seyr, H., and Muskulus, M. (2019). Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review. Appl. Sci., 9. 

  12. International Electrotechnical Commission (2005). Wind turbines-Part 1: Design requirements, IEC 61400-1, IEC. 

  13. DNVGL (2016). DNVGL-ST-0126: Support Structures for Wind Turbines, DNV GL. 

  14. CCS (2012). Specification for Offshore Wind Turbine Certification, CCS. 

  15. Mo, E. (2008). Nonlinear Stochastic Dynamics and Chaos by Numerical Path Integration. [Ph.D. Thesis, Norwegian University of Science and Technology]. 

  16. Narayanan Numerical solutions of Fokker-Planck equation of nonlinear systems subjected to random and harmonic excitations Probabilist. Eng. Mech. 2012 10.1016/j.probengmech.2011.05.006 27 35 

  17. Sun Numerical solution of high dimensional stationary Fokker-Planck equations via tensor decomposition and Chebyshev spectral differentiation Comput. Math. Appl. 2014 10.1016/j.camwa.2014.04.017 67 1960 

  18. Crandall Perturbation techniques for stochastic vibration of nonlinear systems J. Acoust. Soc. Am. 1963 10.1121/1.1918792 35 1700 

  19. Khasminskii A limit theorem for the solutions of differential equations with random right-hand sides Theor. Probab. Appl. 1966 10.1137/1111038 11 390 

  20. Alevras GPU computing for accelerating the numerical Path Integration approach Comput. Struct. 2016 10.1016/j.compstruc.2016.05.002 171 46 

  21. Spencer On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems Nonlinear Dynam. 1993 10.1007/BF00120671 4 357 

  22. Wojtkiewicz Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise: Solution of a forward generalized Kolmogorov equation by a spectral finite difference method Comput. Method Appl. Mech. Eng. 1999 10.1016/S0045-7825(98)00098-X 168 73 

  23. Chai Filter models for prediction of stochastic ship roll response Probabilist. Eng. Mech. 2015 10.1016/j.probengmech.2015.06.002 41 104 

  24. Yurchenko Stochastic Dynamics of a Parametrically base Excited Rotating Pendulum Procedia Iutam 2013 10.1016/j.piutam.2013.01.018 6 160 

  25. Yurchenko Control and dynamics of a SDOF system with piecewise linear stiffness and combined external excitations Probabilist. Eng. Mech. 2014 10.1016/j.probengmech.2013.09.007 35 118 

  26. Iourtchenko Response probability density functions of strongly non-linear systems by the path integration method Int. J. Non-Lin. Mech. 2006 10.1016/j.ijnonlinmec.2006.04.002 41 693 

  27. Naess Response statistics of nonlinear, compliant offshore structures by the path integral solution method Probabilist. Eng. Mech. 1993 10.1016/0266-8920(93)90003-E 8 91 

  28. Zhu Probabilistic solution of non-linear random ship roll motion by path integration Int. J. Non-Lin. Mech. 2016 10.1016/j.ijnonlinmec.2016.03.010 83 1 

  29. Mo, E., and Naess, A. (August, January 31). Efficient path integration by FFT. Presented at the 10th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP10), Tokyo, Japan. 

  30. Beylkin Algorithms for Numerical Analysis in High Dimensions SIAM J. Sci. Comput. 2005 10.1137/040604959 26 2133 

  31. Lombardi Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil Soil Dyn. Earthq. Eng. 2013 10.1016/j.soildyn.2013.01.015 49 165 

  32. Bisoi Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction Soil Dyn. Earthq. Eng. 2014 10.1016/j.soildyn.2014.03.006 63 19 

  33. Nam Evolution of the dynamic response and its effects on the serviceability of offshore wind turbines with stochastic loads and soil degradation Reliab. Eng. Syst. Saf. 2019 10.1016/j.ress.2018.03.017 184 151 

  34. Bisoi Design of monopile supported offshore wind turbine in clay considering dynamic soil-structure-interaction Soil Dyn. Earthq. Eng. 2015 10.1016/j.soildyn.2015.02.017 73 103 

  35. Damgaard Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions Ocean Eng. 2015 10.1016/j.oceaneng.2015.04.039 101 227 

  36. Feyzollahzadeh Wind load response of offshore wind turbine towers with fixed monopile platform J. Wind Eng. Ind. Aerdodyn. 2016 10.1016/j.jweia.2016.09.007 158 122 

  37. Arany Design of monopiles for offshore wind turbines in 10 steps Soil Dyn. Earthq. Eng. 2017 10.1016/j.soildyn.2016.09.024 92 126 

  38. 10.1016/j.soildyn.2018.04.038 Kaynia, A.M. (2018). Seismic considerations in design of offshore wind turbines. Soil Dyn. Earthq. Eng. 

  39. Jalbi Dynamic design considerations for offshore wind turbine jackets supported on multiple foundations Mar. Struc. 2019 10.1016/j.marstruc.2019.05.009 67 102631 

  40. Chengxi Numerical Investigation of a Hybrid Wave Absorption Method in 3D Numerical Wave Tank CMES Comput. Model. Eng. Sci. 2015 107 125 

  41. Yeter Fatigue damage assessment of fixed offshore wind turbine tripod support structures Eng. Struct. 2015 10.1016/j.engstruct.2015.07.038 101 518 

  42. Vestas (2019, January 10). V80-2MW OptiSpeedTM Offshore Wind Turbine. Available online: http://www.vestas.dk/. 

  43. Dostal Probabilistic approach to large amplitude ship rolling in random seas Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011 10.1177/0954406211414523 225 2464 

  44. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2006). Code for Design of High-Rising Structures. 

  45. 10.1049/etr.2014.0041 Bhattacharya, S. (2014). Challenges in Design of Foundations for Offshore Wind Turbines. Eng. Tech. Ref. 

  46. DNV (2014). Offshore Standard DNV-OS-J101 Design of Offshore Wind Turbine Structures, DNV. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로