$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of Ni and Cu addition on cryogenic-temperature tensile and Charpy impact properties in austenitic 22Mn-0.45C–1Al steels

Journal of alloys and compounds, v.815, 2020년, pp.152407 -   

Kim, Bohee (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ,  Lee, Seok Gyu (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ,  Kim, Dae Woong (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ,  Jo, Yong Hee (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ,  Bae, Jinho (Steel Products Research Group Technical Research Laboratories, POSCO) ,  Sohn, Seok Su (Department of Materials Science and Engineering Korea University) ,  Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Austenitic high-Mn steels present a dominant deformation mechanism of TWinning Induced Plasticity (TWIP) or TRansformation Induced Plasticity (TRIP), which effectively enables be used for various cryogenic applications. This mechanism affects significantly tensile or impact properties, and...

주제어

참고문헌 (42)

  1. Choi 29 2012 High Manganese Austenitic Steel for Cryogenic Applications 

  2. Adv. Cryog. Eng. Morris 24 91 1978 Fe-Mn alloys for cryogenic use: a brief survey of current research 

  3. ISIJ Int. Frommeyer 43 438 2003 10.2355/isijinternational.43.438 Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes 

  4. Acta Mater. Sohn 100 39 2015 10.1016/j.actamat.2015.08.027 Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels 

  5. Nature Hoffert 395 881 1998 10.1038/27638 Energy implications of future stabilization of atmospheric CO2 content 

  6. Science Kimura 320 1057 2008 10.1126/science.1156084 Inverse temperature dependence of toughness in an ultrafine grain-structure steel 

  7. Phys. Mesomech. Panin 17 89 2014 10.1134/S1029959914020015 On the nature of low-temperature brittleness of BCC steels 

  8. Physics of Cryogenics Marquardt 11 681 2002 Cryogenic Material Properties Database 

  9. Acta Mater. Kim 87 332 2015 10.1016/j.actamat.2014.11.027 Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels 

  10. J. Mater. Res. Tao 19 1623 2004 10.1557/JMR.2004.0227 Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy 

  11. Mater. Trans. Kato 55 19 2014 10.2320/matertrans.MA201310 Hall-petch relationship and dislocation model for deformation of ultrafine-grained and nanocrystalline metals 

  12. Mater. Des. Dini 31 3395 2010 10.1016/j.matdes.2010.01.049 Tensile deformation behavior of high manganese austenitic steel: the role of grain size 

  13. Mater. Sci. Eng. A Kusakin 617 52 2014 10.1016/j.msea.2014.08.051 Microstructure evolution and strengthening mechanisms of Fe-23Mn-0.3C-1.5Al TWIP steel during cold rolling 

  14. Scr. Mater. Liu 66 431 2012 10.1016/j.scriptamat.2011.12.005 Simultaneously improving the strength and ductility of coarse-grained hadfield steel with increasing strain rate 

  15. Int. J. Plast. Grassel 16 1391 2000 10.1016/S0749-6419(00)00015-2 High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application 

  16. Mater. Sci. Eng. A Shen 561 329 2013 10.1016/j.msea.2012.10.020 Effects of cold rolling on microstructure and mechanical properties of Fe-30Mn-3Si-4Al-0.093C TWIP steel 

  17. Acta Mater. Shen 61 6093 2013 10.1016/j.actamat.2013.06.051 Deformation mechanisms of a 20Mn TWIP steel investigated by in situ neutron diffraction and TEM 

  18. Sci. Rep. Shen 9 7559 2019 10.1038/s41598-019-44105-6 Carbon content-tuned martensite transformation in low-alloy TRIP steels 

  19. ISIJ Int. Choudhary 47 1759 2007 10.2355/isijinternational.47.1759 Morphology and segregation in continuously cast high carbon steel billets 

  20. Metall. Mater. Trans. A Majka 33 1627 2002 10.1007/s11661-002-0172-8 Development of microstructural banding in low-alloy steel with simulated Mn segregation 

  21. Metall. Mater. Trans. B Krauss 34 781 2003 10.1007/s11663-003-0084-z Solidification, segregation, and banding in carbon and alloy steels 

  22. Mater. Sci. Eng. A Cantor 375 213 2004 10.1016/j.msea.2003.10.257 Microstructural development in equiatomic multicomponent alloys 

  23. Mater. Sci. Eng. A Saleh 528 4537 2011 10.1016/j.msea.2011.02.055 Texture evolution of cold rolled and annealed Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steel 

  24. J. Mater. Sci. Ratanaphan 49 4938 2014 10.1007/s10853-014-8195-2 The five parameter grain boundary character distribution of polycrystalline silicon 

  25. Scr. Mater. Gazder 65 560 2011 10.1016/j.scriptamat.2011.06.026 Microtexture analysis of cold-rolled and annealed twinning-induced plasticity steel 

  26. Mater. Sci. Eng. A Dumay 483 184 2008 10.1016/j.msea.2006.12.170 Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel 

  27. Metall. Mater. Trans. A Saeed-Akbari 40 3076 2009 10.1007/s11661-009-0050-8 Derivation and variation in compression-dependent stacking fault energy maps based on subregular solution model in high-manganese steels 

  28. Met. Mater. Int. Choi 1 2019 Tensile and microstructural characteristics of Fe-24Mn steel welds for cryogenic applications 

  29. Mater. Sci. Eng. Remy 28 99 1977 10.1016/0025-5416(77)90093-3 Twinning and strain-induced F.C.C. → H.C.P. Transformation in the Fe-Mn-Cr-C system 

  30. Acta Mater. Curtze 59 1068 2011 10.1016/j.actamat.2010.10.037 Thermodynamic modeling of the stacking fault energy of austenitic steels 

  31. Acta Mater. Curtze 58 5129 2010 10.1016/j.actamat.2010.05.049 Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate 

  32. Mater. Sci. Eng. A Shen 552 514 2012 10.1016/j.msea.2012.05.080 Twinning and martensite in a 304 austenitic stainless steel 

  33. Metall. Trans. A Olson 7 1897 1976 A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation 

  34. Mater. Sci. Eng. A Allain 387 143 2004 10.1016/j.msea.2004.01.060 A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel 

  35. Acta Mater. Byun 52 3889 2004 10.1016/j.actamat.2004.05.003 Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels 

  36. Met. Mater. Int. Kim 25 912 2019 10.1007/s12540-019-00258-7 Back-stress effect on the mechanical strength of TWIP-IF steels layered sheet 

  37. Metall. Mater. Trans. A Hong 43 1870 2012 10.1007/s11661-011-1007-2 Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels 

  38. Met. Mater. Int. Heo 24 265 2018 10.1007/s12540-018-0026-6 Extended Hall-Petch relationships for yield, cleavage and intergranular fracture strengths of BCC steel and its deformation and fracture behaviors 

  39. Scr. Mater. Bouaziz 58 484 2008 10.1016/j.scriptamat.2007.10.050 Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels 

  40. Met. Mater. Int. Lee 24 730 2018 10.1007/s12540-018-0097-4 Grain-refined AZ92 alloy with superior strength and ductility 

  41. Metall. Trans. A Tomota 17 537 1986 10.1007/BF02643961 Microstructural dependence of Fe-high Mn tensile behavior 

  42. Metall. Trans. A Tomota 18 1073 1991 10.1007/BF02668556 The relationship between toughness and microstructure in Fe-high Mn binary alloys 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로