$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Molecular engineering of a conjugated polymer as a hole transporting layer for versatile p–i–n perovskite solar cells

Materials today energy, v.14, 2019년, pp.100341 -   

Chae, Sangmin (Corresponding author.) ,  Yi, Ahra ,  Kim, Hyo Jung

Abstract AI-Helper 아이콘AI-Helper

Abstract Along with the development of perovskite materials, which have enormous potential for optoelectronics such as solar cells and light-emitting diode devices, numerous organic semiconductor polymers, which have been critically adopted into the hole and electron transporting layers, have been ...

주제어

참고문헌 (57)

  1. Nat. Photonics Green 8 506 2014 10.1038/nphoton.2014.134 The emergence of perovskite solar cells 

  2. Nat. Photonics Lin 9 106 2014 10.1038/nphoton.2014.284 Electro-optics of perovskite solar cells 

  3. Adv. Mater. Yin 26 4653 2014 10.1002/adma.201306281 Unique properties of halide perovskites as possible origins of the superior solar cell performance 

  4. Energy Environ. Sci. Correa-Baena 10 710 2017 10.1039/C6EE03397K The rapid evolution of highly efficient perovskite solar cells 

  5. Nat. Rev. Mater. Huang 2 17042 2017 10.1038/natrevmats.2017.42 Understanding the physical properties of hybrid perovskites for photovoltaic applications 

  6. Nat. Energy Park 1 2016 10.1038/nenergy.2016.152 Towards stable and commercially available perovskite solar cells 

  7. Nat. Energy Jeon 3 682 2018 10.1038/s41560-018-0200-6 A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells 

  8. Nature Jung 567 511 2019 10.1038/s41586-019-1036-3 Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) 

  9. Science Lee 338 643 2012 10.1126/science.1228604 Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites 

  10. Nat. Photonics Liu 8 133 2013 10.1038/nphoton.2013.342 Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques 

  11. Nature Liu 501 395 2013 10.1038/nature12509 Efficient planar heterojunction perovskite solar cells by vapour deposition 

  12. J. Phys. Chem. Lett. Snaith 4 3623 2013 10.1021/jz4020162 Perovskites: the emergence of a new Era for low-cost, high-efficiency solar cells 

  13. Science Zhou 345 542 2014 10.1126/science.1254050 Interface engineering of highly efficient perovskite solar cells 

  14. Acc. Chem. Res. Meng 49 155 2016 10.1021/acs.accounts.5b00404 Recent advances in the inverted planar structure of perovskite solar cells 

  15. Nat. Photonics Heo 7 486 2013 10.1038/nphoton.2013.80 Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors 

  16. Nature Jeon 517 476 2015 10.1038/nature14133 Compositional engineering of perovskite materials for high-performance solar cells 

  17. Science Li 353 58 2016 10.1126/science.aaf8060 A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells 

  18. Science Yang 356 1376 2017 10.1126/science.aan2301 Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells 

  19. Adv. Energy Mater. Liu 6 1600457 2016 10.1002/aenm.201600457 Inverted perovskite solar cells: progresses and perspectives 

  20. Adv. Energy Mater. Yan 6 2016 10.1002/aenm.201600474 Hole-transporting materials in inverted planar perovskite solar cells 

  21. Angew Chem. Int. Ed. Engl. Zhu 53 12571 2014 10.1002/anie.201405176 High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells 

  22. Science Chen 350 944 2015 10.1126/science.aad1015 Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers 

  23. Adv. Mater Kim 27 695 2015 10.1002/adma.201404189 High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer 

  24. Nat. Nanotechnol. You 11 75 2016 10.1038/nnano.2015.230 Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers 

  25. Adv. Energy Mater. Chen 7 2017 10.1002/aenm.201700722 Cesium doped NiO x as an efficient hole extraction layer for inverted planar perovskite solar cells 

  26. Adv. Mater. Nie 30 2018 10.1002/adma.201703879 Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide 

  27. Nat. Photonics Malinkiewicz 8 128 2013 10.1038/nphoton.2013.341 Perovskite solar cells employing organic charge-transport layers 

  28. Energy Environ. Sci. Roldán-Carmona 7 994 2014 10.1039/c3ee43619e Flexible high efficiency perovskite solar cells 

  29. Nat. Mater. Kaltenbrunner 14 1032 2015 10.1038/nmat4388 Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air 

  30. Adv. Electron. Mater. Shi 1 2015 10.1002/aelm.201500017 Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review 

  31. J. Mater. Chem. Liu 5 5701 2017 10.1039/C6TA10212C Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers 

  32. Energy Environ. Sci. Berhe 9 323 2016 10.1039/C5EE02733K Organometal halide perovskite solar cells: degradation and stability 

  33. Nano Energy Wang 15 275 2015 10.1016/j.nanoen.2015.04.029 Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells 

  34. Energy Environ. Sci. Stolterfoht 10 1530 2017 10.1039/C7EE00899F Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells 

  35. Nat. Energy Zheng 2 17102 2017 10.1038/nenergy.2017.102 Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations 

  36. Nano Lett. Habisreutinger 14 5561 2014 10.1021/nl501982b Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells 

  37. Energy Environ. Sci. Liu 7 2963 2014 10.1039/C4EE01589D A dopant-free hole-transporting material for efficient and stable perovskite solar cells 

  38. Nat. Energy Saliba 1 15017 2016 10.1038/nenergy.2015.17 A molecularly engineered hole-transporting material for efficient perovskite solar cells 

  39. Adv. Mater. Kranthiraja 29 2017 10.1002/adma.201700183 High-performance long-term-stable dopant-free perovskite solar cells and additive-free organic solar cells by employing newly designed multirole pi-conjugated polymers 

  40. Adv. Energy Mater. Arivunithi 8 1801637 2018 10.1002/aenm.201801637 Efficiency exceeding 20% in perovskite solar cells with side-chain liquid crystalline polymer-doped perovskite absorbers 

  41. Adv. Energy Mater. Kim 8 2018 Donor-acceptor type dopant-free, polymeric hole transport material for planar perovskite solar cells (19.8%) 

  42. Nat. Commun. Bi 6 7747 2015 10.1038/ncomms8747 Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells 

  43. J. Power Sources Xu 360 157 2017 10.1016/j.jpowsour.2017.06.013 Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18% 

  44. Nat. Mater. Jeon 13 897 2014 10.1038/nmat4014 Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells 

  45. Angew Chem. Int. Ed. Engl. Xiao 53 9898 2014 10.1002/anie.201405334 A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells 

  46. Chem. Mater. Chang 16 4772 2004 10.1021/cm049617w Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents 

  47. Appl. Phys. Lett. Yang 90 172116 2007 10.1063/1.2734387 Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents 

  48. Phys. Rev. B Duong 86 2012 Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films 

  49. Nat. Photonics Vohra 9 403 2015 10.1038/nphoton.2015.84 Efficient inverted polymer solar cells employing favourable molecular orientation 

  50. Phys. Rev. Patterson 56 978 1939 10.1103/PhysRev.56.978 The scherrer formula for X-ray particle size determination 

  51. Adv. Mater. Salleo 22 3812 2010 10.1002/adma.200903712 Microstructural characterization and charge transport in thin films of conjugated polymers 

  52. Adv. Mater. DeLongchamp 23 319 2011 10.1002/adma.201001760 Molecular characterization of organic electronic films 

  53. Mater. Today Zheng 21 79 2018 10.1016/j.mattod.2017.10.003 A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent 

  54. Adv. Mater. Chen 2018 Causes and solutions of recombination in perovskite solar cells 

  55. ACS Photonics Park 5 2970 2018 10.1021/acsphotonics.8b00124 Research direction toward theoretical efficiency in perovskite solar cells 

  56. Nat. Energy Zhou 3 952 2018 10.1038/s41560-018-0234-9 High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors 

  57. J. Am. Chem. Soc. Ahn 137 8696 2015 10.1021/jacs.5b04930 Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide 

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로