$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus

Journal of photochemistry and photobiology. B, Biology, v.202, 2020년, pp.111734 -   

Tammina, Sai Kumar (Faculty of Environmental Science and Engineering, Kunming University of Science and Technology) ,  Wan, Yang (Management Office of Private Science and Technology institutions in Kunming) ,  Li, Yanyan (Faculty of Environmental Science and Engineering, Kunming University of Science and Technology) ,  Yang, Yaling (Faculty of Environmental Science and Engineering, Kunming University of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract A simple and one-step microwave digestion method was utilized to synthesize the highly photoluminescent glucosamine derived nitrogen and zinc doped carbon dots (N, Zn-CDs) with a bluish-green luminescence property. The synthesized N, Zn-CDs inherited a good photoluminescence property with ...

주제어

참고문헌 (99)

  1. Sens. Actuat. B: Chem. Lohani 143 649 2010 10.1016/j.snb.2009.10.004 The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors 

  2. Cell Hentze 142 24 2010 10.1016/j.cell.2010.06.028 Two to tango: regulation of mammalian iron metabolism 

  3. Anal. Chim. Acta Lin 634 262 2009 10.1016/j.aca.2008.12.049 A novel ratio metric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore 

  4. Anal. Chem. Li 86 10201 2014 10.1021/ac503183y Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+ 

  5. ACS Appl. Mater. Interfaces Sui 6 18408 2014 10.1021/am506262u Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells 

  6. J. Hazard. Mater. Ghaedi 154 128 2008 10.1016/j.jhazmat.2007.10.003 The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1, 3 propandiimine (BSPDI) loaded on activated carbon 

  7. Talanta Akter 68 406 2005 10.1016/j.talanta.2005.09.011 Speciation of arsenic in ground water samples: a comparative study of CE-UV, HG-AAS and LC-ICP-MS 

  8. Talanta Gomes 66 703 2005 10.1016/j.talanta.2004.12.011 Spectrophotometric determination of iron and boron in soil extracts using a multi-syringe flow injection system 

  9. Analyst Andersen 130 385 2005 10.1039/b412061b A novel method for the filter less preconcentration of iron 

  10. Fleming 

  11. Clin. Microbiol. Rev. Silver 24 71 2011 10.1128/CMR.00030-10 Challenges of antibacterial discovery 

  12. J. Mol. Liq. Hojaghan 241 1114 2017 10.1016/j.molliq.2017.06.106 Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli 

  13. J. Am. Chem. Soc. Zou 138 2064 2016 10.1021/jacs.5b11411 Mechanisms of the antimicrobial activities of graphene materials 

  14. ACS Nano Hu 4 4317 2010 10.1021/nn101097v Graphene-based antibacterial paper 

  15. J. Phys. Chem. C Krishnamoorthy 116 17280 2012 10.1021/jp3047054 Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation 

  16. ACS Appl. Mater. Inter. Hui 8 20 2016 10.1021/acsami.5b10132 Antibacterial property of graphene quantum dots (both source material and bacterial shape matter) 

  17. Clin. Microbiol. Infect. Trzciski 3 198 1997 10.1111/j.1469-0691.1997.tb00598.x Two clones of methicillin-resistant Staphylococcus aureus in Poland 

  18. Infect. Immun. Clauditz 74 4950 2006 10.1128/IAI.00204-06 Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress 

  19. Chem. Mater. Kozak 28 4085 2016 10.1021/acs.chemmater.6b01372 Photoluminescent carbon nanostructures 

  20. Chem. Commun. Shen 48 3686 2012 10.1039/c2cc00110a Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices 

  21. Nano Today Yuan 11 565 2016 10.1016/j.nantod.2016.08.006 Shining carbon dots: synthesis and biomedical and optoelectronic applications 

  22. Angew. Chem. Int. Ed. Baker 49 6726 2010 10.1002/anie.200906623 Luminescent carbon nanodots: emergent nanolights 

  23. Angew. Chem. Int. Ed. Zhu 52 3953 2013 10.1002/anie.201300519 Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging 

  24. Chem. Soc. Rev. Lim 44 362 2015 10.1039/C4CS00269E Carbon quantum dots and their applications 

  25. Mater. Chem. C Singh 4 3131 2016 10.1039/C6TC00480F White light emission from a mixture of pomegranate extract and carbon nanoparticles obtained from the extract 

  26. Chem. Soc. Rev. Wolfbeis 44 4743 2015 10.1039/C4CS00392F An overview of nanoparticles commonly used in fluorescent bioimaging 

  27. Methods Appl. Fluoresc. Demchenko 1 2013 Novel fluorescent carbonic nanomaterials for sensing and imaging 

  28. Nano Res. Zhu 8 355 2015 10.1007/s12274-014-0644-3 The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective 

  29. J. Phys. Chem. B Bottini 110 831 2006 10.1021/jp055503b Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc produced single-walled carbon nanotubes 

  30. J. Mater. Chem. Li 22 2012 10.1039/c2jm34690g Carbon nanodots: synthesis, properties and applications 

  31. Carbon N. Y. Wang 82 87 2015 10.1016/j.carbon.2014.10.035 A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature 

  32. Chem. Commun. Qiao 46 8812 2010 10.1039/c0cc02724c Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation 

  33. RSC Adv. Hu 4 18065 2014 10.1039/C4RA02170C Green synthesis of fluorescent nitrogen/sulfur-doped carbon dots and investigation of their properties by HPLC coupled with mass spectrometry 

  34. Trac-Trend. Anal. Chem. Sun 89 163 2017 10.1016/j.trac.2017.02.001 Fluorescent carbon dots and their sensing applications 

  35. J. Mater. Chem. A Xu 3 542 2015 10.1039/C4TA05483K Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection 

  36. Opt. Mater. Wu 77 258 2018 10.1016/j.optmat.2018.01.048 Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion 

  37. Mater. Sci. Eng. C Das 88 115 2018 10.1016/j.msec.2018.03.010 Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor 

  38. Trac-Trend. Anal. Chem. Lin 103 87 2018 10.1016/j.trac.2018.03.015 Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications 

  39. J. Photoch. Photobio. B. Tammina 94 61 2019 10.1016/j.jphotobiol.2019.01.004 Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature 

  40. ACS Appl. Mater. Interfaces Xu 6 15122 2014 10.1021/am5032727 Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria 

  41. Langmuir Fageria 32 10054 2016 10.1021/acs.langmuir.6b02375 Synthesis of monometallic (Au and Pd) and bimetallic (AuPd) nanoparticles using carbon nitride (C3N4) quantum dots via the photochemical route for nitrophenol reduction 

  42. RSC Adv. Lin 2 2123 2012 10.1039/c2ra00972b Room-temperature wide-range photoluminescence and semiconducting characteristics of two-dimensional pure metallic Zn nanoplates 

  43. Open J. Phys. Chem. Chen 4 44 2014 10.4236/ojpc.2014.42007 Charge transfer mechanism and spatial density correlation of electronic states of excited zinc (3d 9) films 

  44. Angew. Chem. Int. Ed. Hara 43 2955 2004 10.1002/anie.200453947 A carbon material as a strong protonic acid 

  45. Energy Fuel Tsubouchi 17 1119 2003 10.1021/ef020265u Carbon crystallization during high-temperature pyrolysis of coals and the enhancement by calcium 

  46. ACS Omega Atchudan 3 17590 2018 10.1021/acsomega.8b02463 Indian gooseberry-derived tunable fluorescent carbon dots as a promise for in vitro/in vivo multicolor bioimaging and fluorescent ink 

  47. Nano Lett. Peng 12 844 2012 10.1021/nl2038979 Graphene quantum dots derived from carbon fibers 

  48. Guinier 1994 X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies 

  49. Nanotechnology Gu 27 2016 10.1088/0957-4484/27/16/165704 Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots 

  50. Ind. Eng. Chem. Res. Mao 53 6417 2014 10.1021/ie500602n S. ChenFacile access to white fluorescent carbon dots toward light-emitting devices 

  51. Chem. Eng. Process. Ma 140 29 2019 10.1016/j.cep.2019.04.017 Synthesis of luminescent carbon quantum dots by micro plasma process 

  52. RSC Adv. Ostrovska 6 2016 10.1039/C6RA14430F The impact of doped silicon quantum dots on human osteoblasts 

  53. Diam. Relat. Mater. Zhang 7 1663 1998 10.1016/S0925-9635(98)00240-4 Size dependence of energy gaps in small carbon clusters: the origin of broadband luminescence 

  54. Methods Appl. Fluoresc. Liu 5 2017 One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline 

  55. J. Am. Chem. Soc. Luo 131 898 2009 10.1021/ja807934n High yield preparation of macroscopic graphene oxide membranes 

  56. ACS Appl. Mater. Interfaces Ma 9 33011 2017 10.1021/acsami.7b10548 A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions 

  57. Opt. Mater. Arul 78 181 2018 10.1016/j.optmat.2018.02.029 Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications 

  58. J. Mater. Chem. B Han 4 5798 2016 10.1039/C6TB01250G Synthesis of a multifunctional manganese(II)-carbon dots hybrid and its application as an efficient magnetic-fluorescent imaging probe for ovarian cancer cell imaging 

  59. Nanoscale Yuan 7 16841 2015 10.1039/C5NR05326A Germanium doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury (II) ions into cancer cells 

  60. Nanoscale Xu 8 17919 2016 10.1039/C6NR05434J Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental-theoretical consideration 

  61. R. Soc. Open Sci. Yu 5 2018 10.1098/rsos.180245 A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties 

  62. Artif. Cell Nanomed. B. Arsalani 47 540 2019 10.1080/21691401.2018.1562460 Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery 

  63. Ecotox. Environ. Safe. Tabaraki 153 101 2018 10.1016/j.ecoenv.2018.01.059 Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off-on fluorescent sensor for mercury (II) and iodide in environmental samples 

  64. New J. Chem. Desai 42 6125 2018 10.1039/C7NJ04835A Microwave-assisted synthesis of water-soluble Eu3+ hybrid carbon dots with enhanced fluorescence for sensing of Hg2+ ion and imaging of fungal cells 

  65. Opt. Mater. Yang 85 329 2018 10.1016/j.optmat.2018.06.034 Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing 

  66. Microchim. Acta Xu 185 2018 10.1007/s00604-018-2781-y Microwave-assisted synthesis of carbon dots for "turn-on" fluorometric determination of Hg (II) via aggregation-induced emission 

  67. New J. Chem. Liu 42 3097 2018 10.1039/C7NJ05000C One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ion in aqueous solution 

  68. J. Colloid. Interf. Sci. Yang 456 1 2015 10.1016/j.jcis.2015.06.002 Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells 

  69. Anal. Chem. Boens 79 2137 2007 10.1021/ac062160k Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy 

  70. Anal. Chem. Wang 86 8902 2014 10.1021/ac502646x Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application 

  71. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Mu 219 248 2015 10.1016/j.saa.2019.04.065 A ratiometric fluorescence and light scattering sensing platform based on Cu-doped carbon dots for tryptophan and Fe(III) 

  72. Anal. Chim. Acta Lu 898 116 2015 10.1016/j.aca.2015.09.050 Comparative study for N and S doped carbon dots: synthesis, characterization and applications for Fe3+ probe and cellular imaging 

  73. Sensor. Actuat. B Chem. Iqbala 237 408 2016 Comparative study for N and S doped carbon dots: synthesis, characterization and applications for Fe3+ probe and cellular imaging 

  74. Diam. Relat. Mater. Naika 88 262 2018 10.1016/j.diamond.2018.07.018 Quick and low cost synthesis of Sulphur doped carbon dots by simple acidic carbonization of sucrose for the detection of Fe3+ ions in highly acidic environment 

  75. Mater. Sci. Eng. C. Rao 81 213 2017 10.1016/j.msec.2017.07.046 Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection 

  76. Opt. Mater. Wu 77 258 2018 10.1016/j.optmat.2018.01.048 Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion 

  77. J. Colloid Interf. Sci. Li 526 487 2018 10.1016/j.jcis.2018.05.017 Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells 

  78. Appl. Surf. Sci. Murugan 476 468 2019 10.1016/j.apsusc.2019.01.090 Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+ 

  79. Anal. Chim. Acta Zhao 1047 179 2019 10.1016/j.aca.2018.10.005 Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots 

  80. Environ Sci. Tec. Gauthler 20 1162 1986 10.1021/es00153a012 Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials 

  81. Chem. Eur. J. Wang 21 14843 2015 10.1002/chem.201502463 Functionalization of carbonaceous nanodots from Mn (II)-coordinating functional knots 

  82. Anal. Chim. Acta Lu 898 116 2015 10.1016/j.aca.2015.09.050 Comparative study for N and S doped carbon dots: Synthesis, characterization and applications for Fe3+ probe and cellular imaging 

  83. Int. J. Cancer Knaapen 109 799 2004 10.1002/ijc.11708 Inhaled particles and lung cancer. Part A: mechanisms 

  84. Mutat. Res. Risom 592 119 2005 10.1016/j.mrfmmm.2005.06.012 Oxidative stress-induced DNA damage by particulate air pollution 

  85. Nanomaterials Khanna 5 1163 2015 10.3390/nano5031163 Nanotoxicity: an interplay of oxidative stress, inflammation and cell death 

  86. J. Mater. Sci. Li 46 2882 2011 10.1007/s10853-010-5162-4 Ultraviolet up conversion luminescence in Y2O3:Yb3+ Tm3+ nanocrystals and its application in photocatalysis 

  87. Toxicol. in Vitro Li 25 1343 2011 10.1016/j.tiv.2011.05.003 Size-dependent cytotoxicity of amorphous silica nanoparticles in human hepatoma HepG2 cells 

  88. J. Photoch. Photobio B Moradlou 379 144 2019 10.1016/j.jphotochem.2019.04.047 Antibacterial effects of carbon quantum dots@hematite nanostructures deposited on titanium against gram-positive and gram-negative bacteria 

  89. J. Photoch. Photobio. B. Tammina 166 158 2017 10.1016/j.jphotobiol.2016.11.017 Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines 

  90. Water Research Adams 7 219 2015 Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions 

  91. Ceram. Int. Hirota 36 497 2010 10.1016/j.ceramint.2009.09.026 Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions 

  92. Appl. Nanosci. Bhushan 8 137 2018 10.1007/s13204-018-0656-5 Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics 

  93. Arch. Biochem. Biophys. Touati 373 1 2000 10.1006/abbi.1999.1518 Iron and oxidative stress in bacteria 

  94. Colloids and Surfaces A: physicochem, Eng. Aspects Gordon 374 1 2011 10.1016/j.colsurfa.2010.10.015 Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties 

  95. Mater. Sci. Eng. C Dizaj 44 278 2014 10.1016/j.msec.2014.08.031 Antimicrobial activity of the metals and metal oxide nanoparticles 

  96. J. Mater. Chem. A Wu 4 1052 2016 10.1039/C5TA08044D Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation 

  97. Appl. Catal. B. Environ. Wang 108 108 2011 10.1016/j.apcatb.2011.08.015 Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species 

  98. Prog. Nat. Sci. Mater. Joshia 28 15 2018 10.1016/j.pnsc.2018.01.004 Efficient inactivation of Staphylococcus aureus by silver and copper loaded photocatalytic titanate nanotubes 

  99. Appl. Catal. B Environ. Ning 204 1 2017 10.1016/j.apcatb.2016.11.006 Dual couples bi metal depositing and Ag@AgI islanding on BiOI 3D architectures for synergistic bactericidal mechanism of E. coli under visible light 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로