$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel

Journal of materials processing technology, v.278, 2020년, pp.116522 -   

Ahmed, Farid (Contact author.) ,  Ali, Usman ,  Sarker, Dyuti ,  Marzbanrad, Ehsan ,  Choi, Kaylie ,  Mahmoodkhani, Yahya ,  Toyserkani, Ehsan

Abstract AI-Helper 아이콘AI-Helper

Abstract The freedom of design and ability to print complex parts have made laser powder-bed fusion (LPBF) additive manufacturing (AM) a suitable alternative to traditional metal manufacturing approaches. As the focus of metal AM is shifting from prototyping to large-scale production, cutting the c...

주제어

참고문헌 (38)

  1. Addit. Manuf. Aboulkhair 1 77 2014 10.1016/j.addma.2014.08.001 Reducing porosity in AlSi10Mg parts processed by selective laser melting 

  2. Mater. Sci. Eng. A Ali 2019 10.1016/j.msea.2019.04.026 Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17-4 PH stainless steel laser powder-bed fusion parts 

  3. Mater. Des. Ali 155 495 2018 10.1016/j.matdes.2018.06.030 On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes 

  4. Mater. Sci. Eng. A Asgari 707 148 2017 10.1016/j.msea.2017.09.041 On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder 

  5. Int. J. Adv. Manuf. Technol. Atzeni 2012 10.1007/s00170-011-3878-1 Economics of additive manufacturing for end-usable metal parts 

  6. Technol. Forecast. Soc. Change Baumers 2016 10.1016/j.techfore.2015.02.015 The cost of additive manufacturing: machine productivity, economies of scale and technology-push 

  7. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. Chan 44 1010 2013 10.1007/s11661-012-1470-4 Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants 

  8. Int. J. Adv. Manuf. Technol. Delgado 2012 10.1007/s00170-011-3643-5 Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials 

  9. J. Manuf. Process. Esmaeilizadeh 37 11 2019 10.1016/j.jmapro.2018.11.012 On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing 

  10. Adv. Eng. Mater. Facchini 2010 10.1002/adem.200900259 Metastable austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting 

  11. Mater. Des. Fayazfar 144 98 2018 10.1016/j.matdes.2018.02.018 A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties 

  12. J. Mater. Process. Technol. Ferrar 212 355 2012 10.1016/j.jmatprotec.2011.09.020 Gas flow effects on selective laser melting (SLM) manufacturing performance 

  13. J. Mater. Eng. Perform. Frazier 2014 10.1007/s11665-014-0958-z Metal additive manufacturing: a review 

  14. Powder Metall. Prog. Gruber 2018 10.1515/pmp-2018-0005 Effect of powder recycling on the fracture behavior of Electron beam melted alloy 718 

  15. Deform. Fracture Mech. Eng. Mater. Hertzberg 1996 Deformation and fracture mechanics of engineering materials 

  16. Mater. Chem. Phys. Hsiao 2002 10.1016/S0254-0584(01)00460-6 Aging reactions in a 17-4 PH stainless steel 

  17. Opt. Laser Technol. Hu 2017 10.1016/j.optlastec.2016.07.012 Experimental investigation on selective laser melting of 17-4PH stainless steel 

  18. Surf. Topogr. Metrol. Prop. Jamshidinia 3 2015 10.1088/2051-672X/3/1/014003 The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing 

  19. JOM. Jelis 2015 Metallurgical and mechanical evaluation of 4340 steel produced by direct metal laser sintering 

  20. Part. Sci. Technol. Li 23 265 2005 10.1080/02726350590955912 Comparison of particle size distributions measured using different techniques 

  21. J. Res. Inst. Stand. Technol. Luecke 2014 10.6028/jres.119.015 Mechanical properties of austenitic stainless steel made by additive manufacturing 

  22. Procedia Cirp Lutter-Gunther 74 33 2018 10.1016/j.procir.2018.08.008 Spatter formation during laser beam melting of AlSi10Mg and effects on powder quality 

  23. Addit. Manuf. Maamoun 21 234 2018 10.1016/j.addma.2018.03.014 Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder 

  24. Prog. Addit. Manuf. Mahmoodkhani 2018 On the measurement of effective powder layer thickness in laser powder-bed fusion additive manufacturing of metals 

  25. Global Power Propulsion Society Mahmoodkhani 2018 Determination of the most contributing laser powder bed fusion process parameters on the surface roughness quality of Hastelloy X components 

  26. J. Laser Appl. Matsunawa 1998 10.2351/1.521858 Dynamics of keyhole and molten pool in laser welding 

  27. Rapid Prototyp. J. Mumtaz 15 96 2009 10.1108/13552540910943397 Top surface and side roughness of Inconel 625 parts processed using selective laser melting 

  28. J. Mater. Res. Technol. Murr 1 167 2012 10.1016/S2238-7854(12)70029-7 Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting 

  29. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. Nandwana 2016 10.1007/s11663-015-0477-9 Recyclability study on inconel 718 and Ti-6Al-4V powders for use in Electron beam melting 

  30. Mater. Sci. Eng. A Simonelli 616 1 2014 10.1016/j.msea.2014.07.086 Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V 

  31. Powder Technol. Sivasankaran 201 70 2010 10.1016/j.powtec.2010.03.013 An investigation on flowability and compressibility of AA 6061100-x-x wt.% TiO2 micro and nanocomposite powder prepared by blending and mechanical alloying 

  32. Rapid Prototyp. J. Spierings 17 195 2011 10.1108/13552541111124770 Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts 

  33. JOM. Tang 2015 10.1007/s11837-015-1300-4 Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective Electron beam melting 

  34. Addit. Manuf. Tang 2017 10.1016/j.addma.2016.12.001 Prediction of lack-of-fusion porosity for powder bed fusion 

  35. Powder Technol. Terrassa 338 819 2018 10.1016/j.powtec.2018.07.065 Reuse of powder feedstock for directed energy deposition 

  36. J. Mater. Process. Technol. Weingarten 2015 10.1016/j.jmatprotec.2015.02.013 Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg 

  37. Int. J. Fatigue Yadollahi 94 218 2017 10.1016/j.ijfatigue.2016.03.014 Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel 

  38. J. Phys. D Appl. Phys. Zhao 2011 10.1088/0022-3727/44/48/485302 Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로