최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computer methods in applied mechanics and engineering, v.360, 2020년, pp.112685 -
Zhang, Weisheng (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Li, Dingding (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Kang, Pilseong (Center for Space Optics, Korea Research Institute of Standards and Science) , Guo, Xu (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) , Youn, Sung-Kie (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology Chin)
Abstract In the present work, a new IGA-based MMV (moving morphable void) approach for structural topology optimization is developed. In this approach, the MMV-based topology optimization framework is seamlessly integrated into IGA by using TSA (trimming surface analysis) technique. Compared with e...
Comput. Methods Appl. Mech. Engrg. Bendsøe 71 197 1988 10.1016/0045-7825(88)90086-2 Generating optimal topologies in structural design using a homogenization method
Control Cybern. Bendsøe 34 7 2005 Topology optimization - Broadening the areas of application
Acta Mech. Sin. Guo 26 807 2010 10.1007/s10409-010-0395-7 Recent development in structural design and optimization
Struct. Multidiscip. Optim. Sigmund 48 1031 2013 10.1007/s00158-013-0978-6 Topology optimization approaches
Comput. Methods Appl. Mech. Engrg. Zhou 89 309 1991 10.1016/0045-7825(91)90046-9 The COC algorithm, Part II: Topological, geometrical and generalized shape optimization
Eng. Comput. Xie 11 295 1994 10.1108/02644409410799290 Optimal design of multiple load case structures using an evolutionary procedure
Comput. Methods Appl. Mech. Engrg. Wang 192 227 2003 10.1016/S0045-7825(02)00559-5 A level set method for structural topology optimization
J. Comput. Phys. Allaire 194 363 2004 10.1016/j.jcp.2003.09.032 Structural optimization using sensitivity analysis and a level-set method
Internat. J. Numer. Methods Engrg. Chang 65 1585 2006 10.1002/nme.1508 Material cloud method for topology optimization
J. Appl. Mech. Guo 81 2014 10.1115/1.4027609 Doing topology optimization explicitly and geometrically-A new moving morphable components based framework
J. Appl. Mech. Zhang 84 2016 Structural topology optimization through explicit boundary evolution
Comput. Mech. Zhang 59 647 2017 10.1007/s00466-016-1365-0 A new three-dimensional topology optimization method based on moving morphable components (MMCs)
Comput. Methods Appl. Mech. Engrg. Zhang 311 327 2016 10.1016/j.cma.2016.08.022 Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach
Internat. J. Numer. Methods Engrg. Zhang 113 1653 2018 10.1002/nme.5714 Topology optimization with multiple materials via moving morphable component (MMC) method
Comput. Methods Appl. Mech. Engrg. Wang 351 667 2019 10.1016/j.cma.2019.04.007 Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method
Comput. Methods Appl. Mech. Engrg. Norato 293 306 2015 10.1016/j.cma.2015.05.005 A geometry projection method for continuum-based topology optimization with discrete elements
Internat. J. Numer. Methods Engrg. Zhang 114 128 2018 10.1002/nme.5737 A geometry projection method for the topology optimization of curved plate structures with placement bounds
Struct. Multidiscip. Optim. Zhang 54 1173 2016 10.1007/s00158-016-1466-6 A geometry projection method for the topology optimization of plate structures
Comput. Methods Appl. Mech. Engrg. Zhang 325 1 2017 10.1016/j.cma.2017.06.025 Stress-based topology optimization with discrete geometric components
J. Mech. Des. Zhang 139 2017 10.1115/1.4036999 Optimal design of panel reinforcements with ribs made of plates
Comput. Methods Appl. Mech. Engrg. Hughes 194 4135 2005 10.1016/j.cma.2004.10.008 Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
Int. J. Solids Struct. Seo 47 1618 2010 10.1016/j.ijsolstr.2010.03.004 Shape optimization and its extension to topological design based on isogeometric analysis
Comput. Methods Appl. Mech. Engrg. Seo 199 3270 2010 10.1016/j.cma.2010.06.033 Isogeometric topology optimization using trimmed spline surfaces
Struct. Multidiscip. Optim. Kang 53 825 2016 10.1007/s00158-015-1361-6 Isogeometric shape optimization of trimmed shell structures
Arch. Comput. Methods Eng. Dede 19 427 2012 10.1007/s11831-012-9075-z Isogeometric analysis for topology optimization with a phase field model
Struct. Multidiscip. Optim. Kumar 44 471 2011 10.1007/s00158-011-0650-y Topology optimization using B-spline finite elements
Comput. Methods Appl. Mech. Engrg. Qian 265 15 2013 10.1016/j.cma.2013.06.001 Topology optimization in B-spline space
Comput. Mech. Wang 57 19 2016 10.1007/s00466-015-1219-1 Isogeometric analysis for parameterized LSM-based structural topology optimization
Comput. Methods Appl. Mech. Engrg. Hou 326 694 2017 10.1016/j.cma.2017.08.021 Explicit isogeometric topology optimization using moving morphable components
Comput. Methods Appl. Mech. Engrg. Xie 339 61 2018 10.1016/j.cma.2018.04.048 A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes
Comput. Methods Appl. Mech. Engrg. Anitescu 328 638 2018 10.1016/j.cma.2017.08.032 Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes
Comput. Methods Appl. Mech. Engrg. Ghasemi 332 47 2018 10.1016/j.cma.2017.12.005 A multi-material level set-based topology optimization of flexoelectric composites
Comput. Methods Appl. Mech. Engrg. Ghasemi 313 239 2017 10.1016/j.cma.2016.09.029 A level-set based IGA formulation for topology optimization of flexoelectric materials
Cottrell 2009 Isogeometric Analysis: Toward Integration of CAD and FEA
Comput. Methods Appl. Mech. Engrg. Zhang 334 381 2018 10.1016/j.cma.2018.01.050 A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints
Comput. Methods Appl. Mech. Engrg. Xia 283 177 2015 10.1016/j.cma.2014.09.022 Topology optimization with pressure load through a level set method
Haug 1986 Design sensitivity analysis of structural systems
Laporte 2003 Numerical Methods in Sensitivity Analysis and Shape Optimization
Internat. J. Numer. Methods Engrg. Svanberg 24 359 1987 10.1002/nme.1620240207 The method of moving asymptotes- a new method for structural optimization
Comput. Methods Appl. Mech. Engrg. Zhang 322 590 2017 10.1016/j.cma.2017.05.002 Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach
Comput. Methods Appl. Mech. Engrg. Vogiatzis 328 477 2018 10.1016/j.cma.2017.09.012 Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping
Comput. Methods Appl. Mech. Engrg. Ye 344 164 2019 10.1016/j.cma.2018.08.045 Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.