$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Explicit topology optimization using IGA-based moving morphable void (MMV) approach

Computer methods in applied mechanics and engineering, v.360, 2020년, pp.112685 -   

Zhang, Weisheng (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Li, Dingding (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Kang, Pilseong (Center for Space Optics, Korea Research Institute of Standards and Science) ,  Guo, Xu (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology) ,  Youn, Sung-Kie (State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology Chin)

Abstract AI-Helper 아이콘AI-Helper

Abstract In the present work, a new IGA-based MMV (moving morphable void) approach for structural topology optimization is developed. In this approach, the MMV-based topology optimization framework is seamlessly integrated into IGA by using TSA (trimming surface analysis) technique. Compared with e...

Keyword

참고문헌 (42)

  1. Comput. Methods Appl. Mech. Engrg. Bendsøe 71 197 1988 10.1016/0045-7825(88)90086-2 Generating optimal topologies in structural design using a homogenization method 

  2. Control Cybern. Bendsøe 34 7 2005 Topology optimization - Broadening the areas of application 

  3. Acta Mech. Sin. Guo 26 807 2010 10.1007/s10409-010-0395-7 Recent development in structural design and optimization 

  4. Struct. Multidiscip. Optim. Sigmund 48 1031 2013 10.1007/s00158-013-0978-6 Topology optimization approaches 

  5. Comput. Methods Appl. Mech. Engrg. Zhou 89 309 1991 10.1016/0045-7825(91)90046-9 The COC algorithm, Part II: Topological, geometrical and generalized shape optimization 

  6. Eng. Comput. Xie 11 295 1994 10.1108/02644409410799290 Optimal design of multiple load case structures using an evolutionary procedure 

  7. Comput. Methods Appl. Mech. Engrg. Wang 192 227 2003 10.1016/S0045-7825(02)00559-5 A level set method for structural topology optimization 

  8. J. Comput. Phys. Allaire 194 363 2004 10.1016/j.jcp.2003.09.032 Structural optimization using sensitivity analysis and a level-set method 

  9. Internat. J. Numer. Methods Engrg. Chang 65 1585 2006 10.1002/nme.1508 Material cloud method for topology optimization 

  10. J. Appl. Mech. Guo 81 2014 10.1115/1.4027609 Doing topology optimization explicitly and geometrically-A new moving morphable components based framework 

  11. J. Appl. Mech. Zhang 84 2016 Structural topology optimization through explicit boundary evolution 

  12. Comput. Mech. Zhang 59 647 2017 10.1007/s00466-016-1365-0 A new three-dimensional topology optimization method based on moving morphable components (MMCs) 

  13. Comput. Methods Appl. Mech. Engrg. Zhang 311 327 2016 10.1016/j.cma.2016.08.022 Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach 

  14. Internat. J. Numer. Methods Engrg. Zhang 113 1653 2018 10.1002/nme.5714 Topology optimization with multiple materials via moving morphable component (MMC) method 

  15. Comput. Methods Appl. Mech. Engrg. Wang 351 667 2019 10.1016/j.cma.2019.04.007 Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method 

  16. Comput. Methods Appl. Mech. Engrg. Norato 293 306 2015 10.1016/j.cma.2015.05.005 A geometry projection method for continuum-based topology optimization with discrete elements 

  17. Internat. J. Numer. Methods Engrg. Zhang 114 128 2018 10.1002/nme.5737 A geometry projection method for the topology optimization of curved plate structures with placement bounds 

  18. Struct. Multidiscip. Optim. Zhang 54 1173 2016 10.1007/s00158-016-1466-6 A geometry projection method for the topology optimization of plate structures 

  19. Comput. Methods Appl. Mech. Engrg. Zhang 325 1 2017 10.1016/j.cma.2017.06.025 Stress-based topology optimization with discrete geometric components 

  20. J. Mech. Des. Zhang 139 2017 10.1115/1.4036999 Optimal design of panel reinforcements with ribs made of plates 

  21. Comput. Methods Appl. Mech. Engrg. Hughes 194 4135 2005 10.1016/j.cma.2004.10.008 Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement 

  22. Int. J. Solids Struct. Seo 47 1618 2010 10.1016/j.ijsolstr.2010.03.004 Shape optimization and its extension to topological design based on isogeometric analysis 

  23. Comput. Methods Appl. Mech. Engrg. Seo 199 3270 2010 10.1016/j.cma.2010.06.033 Isogeometric topology optimization using trimmed spline surfaces 

  24. Struct. Multidiscip. Optim. Kang 53 825 2016 10.1007/s00158-015-1361-6 Isogeometric shape optimization of trimmed shell structures 

  25. Arch. Comput. Methods Eng. Dede 19 427 2012 10.1007/s11831-012-9075-z Isogeometric analysis for topology optimization with a phase field model 

  26. Struct. Multidiscip. Optim. Kumar 44 471 2011 10.1007/s00158-011-0650-y Topology optimization using B-spline finite elements 

  27. Comput. Methods Appl. Mech. Engrg. Qian 265 15 2013 10.1016/j.cma.2013.06.001 Topology optimization in B-spline space 

  28. Comput. Mech. Wang 57 19 2016 10.1007/s00466-015-1219-1 Isogeometric analysis for parameterized LSM-based structural topology optimization 

  29. Comput. Methods Appl. Mech. Engrg. Hou 326 694 2017 10.1016/j.cma.2017.08.021 Explicit isogeometric topology optimization using moving morphable components 

  30. Comput. Methods Appl. Mech. Engrg. Xie 339 61 2018 10.1016/j.cma.2018.04.048 A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes 

  31. Comput. Methods Appl. Mech. Engrg. Anitescu 328 638 2018 10.1016/j.cma.2017.08.032 Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes 

  32. Comput. Methods Appl. Mech. Engrg. Ghasemi 332 47 2018 10.1016/j.cma.2017.12.005 A multi-material level set-based topology optimization of flexoelectric composites 

  33. Comput. Methods Appl. Mech. Engrg. Ghasemi 313 239 2017 10.1016/j.cma.2016.09.029 A level-set based IGA formulation for topology optimization of flexoelectric materials 

  34. Cottrell 2009 Isogeometric Analysis: Toward Integration of CAD and FEA 

  35. Comput. Methods Appl. Mech. Engrg. Zhang 334 381 2018 10.1016/j.cma.2018.01.050 A Moving Morphable Void (MMV)-based explicit approach for topology optimization considering stress constraints 

  36. Comput. Methods Appl. Mech. Engrg. Xia 283 177 2015 10.1016/j.cma.2014.09.022 Topology optimization with pressure load through a level set method 

  37. Haug 1986 Design sensitivity analysis of structural systems 

  38. Laporte 2003 Numerical Methods in Sensitivity Analysis and Shape Optimization 

  39. Internat. J. Numer. Methods Engrg. Svanberg 24 359 1987 10.1002/nme.1620240207 The method of moving asymptotes- a new method for structural optimization 

  40. Comput. Methods Appl. Mech. Engrg. Zhang 322 590 2017 10.1016/j.cma.2017.05.002 Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach 

  41. Comput. Methods Appl. Mech. Engrg. Vogiatzis 328 477 2018 10.1016/j.cma.2017.09.012 Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping 

  42. Comput. Methods Appl. Mech. Engrg. Ye 344 164 2019 10.1016/j.cma.2018.08.045 Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로