$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Topology optimization design for total sound absorption in porous media

Computer methods in applied mechanics and engineering, v.360, 2020년, pp.112723 -   

Yoon, Won Uk (Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University) ,  Park, Jun Hyeong (Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University) ,  Lee, Joong Seok (School of Mechanical Engineering , Chungnam National University) ,  Kim, Yoon Young (Department of Mechanical and Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Acoustic porous layers used for noise reduction have the unique functionality of dissipating sound energy. It is very difficult for finite length porous layers to realize total sound absorption if they are filled only with homogeneous materials. Rigid inclusions inserted in a porous medium...

Keyword

참고문헌 (38)

  1. Allard 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 

  2. Comput. Methods Appl. Mech. Engrg. Wadbro 196 420 2006 10.1016/j.cma.2006.05.005 Topology optimization of an acoustic horn 

  3. J. Sound Vib. Dühring 317 557 2008 10.1016/j.jsv.2008.03.042 Acoustic design by topology optimization 

  4. Internat. J. Numer. Methods Engrg. Lee 80 455 2009 10.1002/nme.2645 Topology optimization of muffler internal partitions for improving acoustical attenuation performance 

  5. Comput. Methods Appl. Mech. Engrg. Lee 198 1017 2009 10.1016/j.cma.2008.11.008 Rigid body modeling issue in acoustical topology optimization 

  6. Comput. Methods Appl. Mech. Engrg. Kook 237-240 130 2012 10.1016/j.cma.2012.05.004 Acoustical topology optimization for Zwicker’s loudness model-Application to noise barriers 

  7. Comput. Methods Appl. Mech. Engrg. Kook 255 40 2013 10.1016/j.cma.2012.10.022 Acoustical topology optimization of Zwicker’s loudness with Padé approximation 

  8. Internat. J. Numer. Methods Engrg. Yoon 70 1049 2007 10.1002/nme.1900 Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation 

  9. Comput. Methods Appl. Mech. Engrg. Sigmund 196 1874 2007 10.1016/j.cma.2006.09.021 Topology optimization using a mixed formulation: An alternative way to solve pressure load problems 

  10. J. Acoust. Soc. Am. Lee 122 2097 2007 10.1121/1.2770541 Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization 

  11. J. Acoust. Soc. Am. Lee 123 2094 2008 10.1121/1.2839001 Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method 

  12. Comput. Methods Appl. Mech. Engrg. Yamamoto 198 1439 2009 10.1016/j.cma.2008.12.008 Topology design of multi-material soundproof structures including poroelastic media to minimize sound pressure levels 

  13. J. Sound Vib. Lee 331 5518 2012 10.1016/j.jsv.2012.07.027 Unified multiphase modeling for evolving, acoustically coupled systems consisting of acoustic, elastic, poroelastic media and septa 

  14. Comput. Methods Appl. Mech. Engrg. Lee 287 191 2015 10.1016/j.cma.2015.01.011 Topology optimization for three-phase materials distribution in a dissipative expansion chamber by unified multiphase modeling approach 

  15. Struct. Multidiscip. Optim. Yedeg 53 645 2016 10.1007/s00158-015-1317-x Interior layout topology optimization of a reactive muffler 

  16. J. Sound Vib. Kim 339 123 2015 10.1016/j.jsv.2014.11.030 Optimal rigid and porous material distributions for noise barrier by acoustic topology optimization 

  17. Struct. Multidiscip. Optim. Zhao 56 315 2017 10.1007/s00158-017-1666-8 Design of absorbing material distribution for sound barrier using topology optimization 

  18. Nat. Rev. Mater. Cummer 1 16001 2016 10.1038/natrevmats.2016.1 Controlling sound with acoustic metamaterials 

  19. Sci. Adv. Ma 2 2016 10.1126/sciadv.1501595 Acoustic metamaterials: From local resonances to broad horizons 

  20. Acoust. Today Haberman 12 31 2016 Acoustic metamaterials 

  21. J. Acoust. Soc. Am. Groby 126 685 2009 10.1121/1.3158936 Acoustic response of a rigid-frame porous medium plate with a periodic set of inclusions 

  22. J. Acoust. Soc. Am. Groby 130 3771 2011 10.1121/1.3652865 Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions 

  23. J. Acoust. Soc. Am. Lagarrugue 134 4670 2013 10.1121/1.4824843 Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions 

  24. J. Acoust. Soc. Am. Groby 137 273 2015 10.1121/1.4904534 Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators 

  25. J. Appl. Phys. Yang 117 2015 10.1063/1.4919844 Metaporous layer to overcome the thickness constraint for broadband sound absorption 

  26. J. Phys. D: Appl. Phys. Yang 50 2017 Multiple slow waves in metaporous layers for broadband sound absorption 

  27. Appl. Acoust. Lagarrigue 102 49 2016 10.1016/j.apacoust.2015.09.011 Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band 

  28. Ihlenburg 1998 Finite Element Analysis of Acoustic Scattering 

  29. Reddy 2002 Energy Principles and Variational Methods in Applied Mechanics 

  30. Bathe 1996 Finite Element Procedures 

  31. Bendsøe 2003 Topology Optimization: Theory, Methods and Applications 

  32. J. Fluid Mech. Johnson 176 379 1987 10.1017/S0022112087000727 Theory of dynamic permeability and tortuosity in fluid-saturated porous media 

  33. J. Appl. Phys. Champoux 70 1975 1991 10.1063/1.349482 Dynamic tortuosity and bulk modulus in air-saturated porous media 

  34. Internat. J. Numer. Methods Engrg. Svanberg 24 359 1987 10.1002/nme.1620240207 The method of moving asymptotes-a new method for structural optimization 

  35. Comput. Methods Appl. Mech. Engrg. Bruns 190 3443 2001 10.1016/S0045-7825(00)00278-4 Topology optimization of non-linear elastic structures and compliant mechanisms 

  36. Internat. J. Numer. Methods Engrg. Bourdin 50 2143 2001 10.1002/nme.116 Filters in topology optimization 

  37. Internat. J. Numer. Methods Engrg. Guest 61 238 2004 10.1002/nme.1064 Achieving minimum length scale in topology optimization using nodal design variables and projection functions 

  38. Struct. Multidiscip. Optim. Xu 41 495 2010 10.1007/s00158-009-0452-7 Volume preserving nonlinear density filter based on heaviside functions 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로